# L11a99

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a99 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $-\frac{4 t(1) t(2)^3-3 t(2)^3-10 t(1) t(2)^2+10 t(2)^2+10 t(1) t(2)-10 t(2)-3 t(1)+4}{\sqrt{t(1)} t(2)^{3/2}}$ (db) Jones polynomial $q^{9/2}-\frac{6}{q^{9/2}}-4 q^{7/2}+\frac{10}{q^{7/2}}+8 q^{5/2}-\frac{15}{q^{5/2}}-11 q^{3/2}+\frac{16}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{3}{q^{11/2}}+15 \sqrt{q}-\frac{18}{\sqrt{q}}$ (db) Signature -1 (db) HOMFLY-PT polynomial $z^3 a^5+z a^5-z^5 a^3-z^3 a^3+2 a^3 z^{-1} -2 z^5 a-4 z^3 a-5 z a-3 a z^{-1} -z^5 a^{-1} +2 z a^{-1} + a^{-1} z^{-1} +z^3 a^{-3}$ (db) Kauffman polynomial $-2 a^2 z^{10}-2 z^{10}-4 a^3 z^9-10 a z^9-6 z^9 a^{-1} -4 a^4 z^8-2 a^2 z^8-7 z^8 a^{-2} -5 z^8-4 a^5 z^7+6 a^3 z^7+30 a z^7+16 z^7 a^{-1} -4 z^7 a^{-3} -3 a^6 z^6+2 a^4 z^6+10 a^2 z^6+21 z^6 a^{-2} -z^6 a^{-4} +27 z^6-a^7 z^5+5 a^5 z^5-9 a^3 z^5-38 a z^5-13 z^5 a^{-1} +10 z^5 a^{-3} +6 a^6 z^4+5 a^4 z^4-14 a^2 z^4-16 z^4 a^{-2} +2 z^4 a^{-4} -31 z^4+2 a^7 z^3+9 a^3 z^3+20 a z^3+6 z^3 a^{-1} -3 z^3 a^{-3} -3 a^6 z^2-3 a^4 z^2+7 a^2 z^2+4 z^2 a^{-2} +11 z^2-a^7 z-4 a^3 z-7 a z-2 z a^{-1} -3 a^2- a^{-2} -3+2 a^3 z^{-1} +3 a z^{-1} + a^{-1} z^{-1}$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-6-5-4-3-2-1012345χ
10           1-1
8          3 3
6         51 -4
4        63  3
2       95   -4
0      96    3
-2     810     2
-4    78      -1
-6   38       5
-8  37        -4
-10 14         3
-12 2          -2
-141           1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-2$ $i=0$ $r=-6$ ${\mathbb Z}$ $r=-5$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-4$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{3}$ $r=-3$ ${\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=-2$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7}$ ${\mathbb Z}^{7}$ $r=-1$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{8}$ $r=0$ ${\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{9}$ $r=1$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9}$ ${\mathbb Z}^{9}$ $r=2$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=3$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=4$ ${\mathbb Z}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=5$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.