L11a99

From Knot Atlas
Jump to: navigation, search

L11a98.gif

L11a98

L11a100.gif

L11a100

Contents

L11a99.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a99 at Knotilus!


Link Presentations

[edit Notes on L11a99's Link Presentations]

Planar diagram presentation X6172 X2,9,3,10 X12,3,13,4 X10,5,11,6 X22,11,5,12 X4,21,1,22 X18,16,19,15 X16,8,17,7 X8,18,9,17 X20,14,21,13 X14,20,15,19
Gauss code {1, -2, 3, -6}, {4, -1, 8, -9, 2, -4, 5, -3, 10, -11, 7, -8, 9, -7, 11, -10, 6, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a99 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{4 t(1) t(2)^3-3 t(2)^3-10 t(1) t(2)^2+10 t(2)^2+10 t(1) t(2)-10 t(2)-3 t(1)+4}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial q^{9/2}-\frac{6}{q^{9/2}}-4 q^{7/2}+\frac{10}{q^{7/2}}+8 q^{5/2}-\frac{15}{q^{5/2}}-11 q^{3/2}+\frac{16}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{3}{q^{11/2}}+15 \sqrt{q}-\frac{18}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial z^3 a^5+z a^5-z^5 a^3-z^3 a^3+2 a^3 z^{-1} -2 z^5 a-4 z^3 a-5 z a-3 a z^{-1} -z^5 a^{-1} +2 z a^{-1} + a^{-1} z^{-1} +z^3 a^{-3} (db)
Kauffman polynomial -2 a^2 z^{10}-2 z^{10}-4 a^3 z^9-10 a z^9-6 z^9 a^{-1} -4 a^4 z^8-2 a^2 z^8-7 z^8 a^{-2} -5 z^8-4 a^5 z^7+6 a^3 z^7+30 a z^7+16 z^7 a^{-1} -4 z^7 a^{-3} -3 a^6 z^6+2 a^4 z^6+10 a^2 z^6+21 z^6 a^{-2} -z^6 a^{-4} +27 z^6-a^7 z^5+5 a^5 z^5-9 a^3 z^5-38 a z^5-13 z^5 a^{-1} +10 z^5 a^{-3} +6 a^6 z^4+5 a^4 z^4-14 a^2 z^4-16 z^4 a^{-2} +2 z^4 a^{-4} -31 z^4+2 a^7 z^3+9 a^3 z^3+20 a z^3+6 z^3 a^{-1} -3 z^3 a^{-3} -3 a^6 z^2-3 a^4 z^2+7 a^2 z^2+4 z^2 a^{-2} +11 z^2-a^7 z-4 a^3 z-7 a z-2 z a^{-1} -3 a^2- a^{-2} -3+2 a^3 z^{-1} +3 a z^{-1} + a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
10           1-1
8          3 3
6         51 -4
4        63  3
2       95   -4
0      96    3
-2     810     2
-4    78      -1
-6   38       5
-8  37        -4
-10 14         3
-12 2          -2
-141           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{9}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a98.gif

L11a98

L11a100.gif

L11a100