L11n102

From Knot Atlas
Jump to: navigation, search

L11n101.gif

L11n101

L11n103.gif

L11n103

Contents

L11n102.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n102 at Knotilus!


Link Presentations

[edit Notes on L11n102's Link Presentations]

Planar diagram presentation X6172 X3,13,4,12 X7,16,8,17 X17,22,18,5 X13,18,14,19 X21,14,22,15 X9,20,10,21 X15,8,16,9 X19,10,20,11 X2536 X11,1,12,4
Gauss code {1, -10, -2, 11}, {10, -1, -3, 8, -7, 9, -11, 2, -5, 6, -8, 3, -4, 5, -9, 7, -6, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n102 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) \left(3 t(2)^2-4 t(2)+3\right)}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -\sqrt{q}+\frac{3}{\sqrt{q}}-\frac{7}{q^{3/2}}+\frac{10}{q^{5/2}}-\frac{14}{q^{7/2}}+\frac{13}{q^{9/2}}-\frac{13}{q^{11/2}}+\frac{10}{q^{13/2}}-\frac{6}{q^{15/2}}+\frac{3}{q^{17/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -a^9 z^{-1} -2 a^7 z^3-a^7 z+a^7 z^{-1} +2 a^5 z^5+5 a^5 z^3+5 a^5 z+2 a^5 z^{-1} +a^3 z^5-3 a^3 z-2 a^3 z^{-1} -a z^3-a z (db)
Kauffman polynomial -6 z^4 a^{10}+11 z^2 a^{10}-4 a^{10}-3 z^7 a^9+3 z^5 a^9-z^3 a^9+2 z a^9+a^9 z^{-1} -5 z^8 a^8+13 z^6 a^8-24 z^4 a^8+25 z^2 a^8-9 a^8-2 z^9 a^7-5 z^7 a^7+20 z^5 a^7-25 z^3 a^7+9 z a^7+a^7 z^{-1} -10 z^8 a^6+23 z^6 a^6-24 z^4 a^6+12 z^2 a^6-4 a^6-2 z^9 a^5-7 z^7 a^5+27 z^5 a^5-33 z^3 a^5+15 z a^5-2 a^5 z^{-1} -5 z^8 a^4+7 z^6 a^4-z^4 a^4-3 z^2 a^4+2 a^4-5 z^7 a^3+9 z^5 a^3-7 z^3 a^3+7 z a^3-2 a^3 z^{-1} -3 z^6 a^2+5 z^4 a^2-z^2 a^2-z^5 a+2 z^3 a-z a (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
2         11
0        2 -2
-2       51 4
-4      74  -3
-6     73   4
-8    67    1
-10   77     0
-12  36      3
-14 37       -4
-16 3        3
-183         -3
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-7 {\mathbb Z}^{3}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n101.gif

L11n101

L11n103.gif

L11n103