L11n103

From Knot Atlas
Jump to: navigation, search

L11n102.gif

L11n102

L11n104.gif

L11n104

Contents

L11n103.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n103 at Knotilus!


Link Presentations

[edit Notes on L11n103's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X7,16,8,17 X17,22,18,5 X13,18,14,19 X21,14,22,15 X9,20,10,21 X15,8,16,9 X19,10,20,11 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, -3, 8, -7, 9, 11, -2, -5, 6, -8, 3, -4, 5, -9, 7, -6, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n103 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{3 t(1) t(2)^3+t(2)^3-3 t(1) t(2)^2-3 t(2)+t(1)+3}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -\frac{4}{q^{9/2}}+\frac{2}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{25/2}}-\frac{1}{q^{23/2}}+\frac{1}{q^{21/2}}+\frac{1}{q^{19/2}}-\frac{3}{q^{17/2}}+\frac{3}{q^{15/2}}-\frac{5}{q^{13/2}}+\frac{4}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial -a^{13} z^{-1} +2 a^{11} z+a^{11} z^{-1} +a^9 z^3+4 a^9 z+2 a^9 z^{-1} -2 a^7 z^5-8 a^7 z^3-7 a^7 z-2 a^7 z^{-1} -a^5 z^5-3 a^5 z^3-a^5 z (db)
Kauffman polynomial a^{14} z^8-7 a^{14} z^6+15 a^{14} z^4-13 a^{14} z^2+4 a^{14}+a^{13} z^9-7 a^{13} z^7+13 a^{13} z^5-7 a^{13} z^3+a^{13} z-a^{13} z^{-1} +2 a^{12} z^8-17 a^{12} z^6+41 a^{12} z^4-34 a^{12} z^2+9 a^{12}+a^{11} z^9-7 a^{11} z^7+12 a^{11} z^5-2 a^{11} z^3-a^{11} z-a^{11} z^{-1} +2 a^{10} z^8-13 a^{10} z^6+27 a^{10} z^4-17 a^{10} z^2+4 a^{10}+3 a^9 z^7-13 a^9 z^5+21 a^9 z^3-12 a^9 z+2 a^9 z^{-1} +a^8 z^8-a^8 z^6-4 a^8 z^4+5 a^8 z^2-2 a^8+3 a^7 z^7-11 a^7 z^5+13 a^7 z^3-9 a^7 z+2 a^7 z^{-1} +2 a^6 z^6-5 a^6 z^4+a^6 z^2+a^5 z^5-3 a^5 z^3+a^5 z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-4           11
-6          21-1
-8         2  2
-10        22  0
-12      142   1
-14      13    2
-16    143     0
-18   1 1      2
-20   13       -2
-22 11         0
-24            0
-261           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4 i=-2
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{3} {\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n102.gif

L11n102

L11n104.gif

L11n104