L11n105

From Knot Atlas
Jump to: navigation, search

L11n104.gif

L11n104

L11n106.gif

L11n106

Contents

L11n105.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n105 at Knotilus!


Link Presentations

[edit Notes on L11n105's Link Presentations]

Planar diagram presentation X6172 X3,13,4,12 X7,16,8,17 X17,22,18,5 X13,18,14,19 X9,21,10,20 X19,14,20,15 X21,9,22,8 X15,10,16,11 X2536 X11,1,12,4
Gauss code {1, -10, -2, 11}, {10, -1, -3, 8, -6, 9, -11, 2, -5, 7, -9, 3, -4, 5, -7, 6, -8, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n105 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1)^3 \left(t(2)^2+1\right)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial \frac{8}{q^{9/2}}-\frac{10}{q^{7/2}}-q^{5/2}+\frac{10}{q^{5/2}}+3 q^{3/2}-\frac{11}{q^{3/2}}+\frac{2}{q^{13/2}}-\frac{5}{q^{11/2}}-6 \sqrt{q}+\frac{8}{\sqrt{q}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -z a^7-a^7 z^{-1} +z^5 a^5+4 z^3 a^5+6 z a^5+3 a^5 z^{-1} -z^7 a^3-5 z^5 a^3-10 z^3 a^3-10 z a^3-3 a^3 z^{-1} +2 z^5 a+7 z^3 a+7 z a+2 a z^{-1} -z^3 a^{-1} -2 z a^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial 3 a^8 z^2-a^8+a^7 z^5+5 a^7 z^3-3 a^7 z+a^7 z^{-1} +5 a^6 z^6-7 a^6 z^4+6 a^6 z^2-2 a^6+9 a^5 z^7-26 a^5 z^5+28 a^5 z^3-14 a^5 z+3 a^5 z^{-1} +7 a^4 z^8-18 a^4 z^6+11 a^4 z^4-3 a^4 z^2+2 a^3 z^9+7 a^3 z^7-42 a^3 z^5+48 a^3 z^3-22 a^3 z+3 a^3 z^{-1} +10 a^2 z^8-35 a^2 z^6+32 a^2 z^4-10 a^2 z^2+2 a^2+2 a z^9-a z^7+z^7 a^{-1} -19 a z^5-4 z^5 a^{-1} +31 a z^3+6 z^3 a^{-1} -15 a z-4 z a^{-1} +2 a z^{-1} + a^{-1} z^{-1} +3 z^8-12 z^6+14 z^4-4 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
6         11
4        2 -2
2       41 3
0      42  -2
-2     74   3
-4    56    1
-6   55     0
-8  35      2
-10 25       -3
-12 3        3
-142         -2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-5 {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n104.gif

L11n104

L11n106.gif

L11n106