L11n112

From Knot Atlas
Jump to: navigation, search

L11n111.gif

L11n111

L11n113.gif

L11n113

Contents

L11n112.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n112 at Knotilus!


Link Presentations

[edit Notes on L11n112's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X7,18,8,19 X19,22,20,5 X9,21,10,20 X21,9,22,8 X11,17,12,16 X17,15,18,14 X15,11,16,10 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, -3, 6, -5, 9, -7, -2, 11, 8, -9, 7, -8, 3, -4, 5, -6, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n112 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 (u-1) (v-1)}{\sqrt{u} \sqrt{v}} (db)
Jones polynomial -4 q^{9/2}+3 q^{7/2}-3 q^{5/2}-\frac{1}{q^{5/2}}+2 q^{3/2}+\frac{1}{q^{3/2}}+q^{15/2}-2 q^{13/2}+3 q^{11/2}-\sqrt{q}-\frac{1}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z a^{-7} + a^{-7} z^{-1} -2 z^3 a^{-5} -5 z a^{-5} -4 a^{-5} z^{-1} +z^5 a^{-3} +5 z^3 a^{-3} +10 z a^{-3} +6 a^{-3} z^{-1} -z^5 a^{-1} +a z^3-6 z^3 a^{-1} +3 a z-9 z a^{-1} +2 a z^{-1} -5 a^{-1} z^{-1} (db)
Kauffman polynomial -z^8 a^{-2} -z^8 a^{-4} -z^8 a^{-6} -z^8-a z^7-2 z^7 a^{-1} -3 z^7 a^{-3} -4 z^7 a^{-5} -2 z^7 a^{-7} +7 z^6 a^{-2} +3 z^6 a^{-4} +z^6 a^{-6} -z^6 a^{-8} +6 z^6+6 a z^5+16 z^5 a^{-1} +20 z^5 a^{-3} +18 z^5 a^{-5} +8 z^5 a^{-7} -10 z^4 a^{-2} +2 z^4 a^{-4} +8 z^4 a^{-6} +4 z^4 a^{-8} -8 z^4-10 a z^3-33 z^3 a^{-1} -39 z^3 a^{-3} -24 z^3 a^{-5} -8 z^3 a^{-7} -7 z^2 a^{-4} -9 z^2 a^{-6} -4 z^2 a^{-8} +2 z^2+7 a z+22 z a^{-1} +27 z a^{-3} +16 z a^{-5} +4 z a^{-7} + a^{-2} +3 a^{-4} +3 a^{-6} + a^{-8} +1-2 a z^{-1} -5 a^{-1} z^{-1} -6 a^{-3} z^{-1} -4 a^{-5} z^{-1} - a^{-7} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
16           1-1
14          1 1
12         21 -1
10        21  1
8      122   1
6      22    0
4    122     1
2   122      -1
0   13       2
-2 11         0
-4            0
-61           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2 i=4
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{3} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n111.gif

L11n111

L11n113.gif

L11n113