L11n114

From Knot Atlas
Jump to: navigation, search

L11n113.gif

L11n113

L11n115.gif

L11n115

Contents

L11n114.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n114 at Knotilus!


Link Presentations

[edit Notes on L11n114's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X18,8,19,7 X22,20,5,19 X20,9,21,10 X8,21,9,22 X11,17,12,16 X17,15,18,14 X15,11,16,10 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, 3, -6, 5, 9, -7, -2, 11, 8, -9, 7, -8, -3, 4, -5, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n114 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) \left(t(2)^4-2 t(2)^3+t(2)^2-2 t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial 7 q^{9/2}-9 q^{7/2}+9 q^{5/2}-\frac{1}{q^{5/2}}-9 q^{3/2}+\frac{2}{q^{3/2}}+2 q^{13/2}-5 q^{11/2}+7 \sqrt{q}-\frac{5}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z a^{-7} + a^{-7} z^{-1} -z^5 a^{-5} -4 z^3 a^{-5} -6 z a^{-5} -4 a^{-5} z^{-1} +z^7 a^{-3} +5 z^5 a^{-3} +10 z^3 a^{-3} +12 z a^{-3} +6 a^{-3} z^{-1} -2 z^5 a^{-1} +a z^3-8 z^3 a^{-1} +3 a z-10 z a^{-1} +2 a z^{-1} -5 a^{-1} z^{-1} (db)
Kauffman polynomial -z^9 a^{-1} -z^9 a^{-3} -7 z^8 a^{-2} -5 z^8 a^{-4} -2 z^8-a z^7-3 z^7 a^{-1} -10 z^7 a^{-3} -8 z^7 a^{-5} +23 z^6 a^{-2} +10 z^6 a^{-4} -5 z^6 a^{-6} +8 z^6+5 a z^5+26 z^5 a^{-1} +47 z^5 a^{-3} +25 z^5 a^{-5} -z^5 a^{-7} -16 z^4 a^{-2} +2 z^4 a^{-4} +9 z^4 a^{-6} -9 z^4-9 a z^3-41 z^3 a^{-1} -58 z^3 a^{-3} -31 z^3 a^{-5} -5 z^3 a^{-7} -8 z^2 a^{-4} -9 z^2 a^{-6} -3 z^2 a^{-8} +2 z^2+7 a z+24 z a^{-1} +31 z a^{-3} +18 z a^{-5} +4 z a^{-7} + a^{-2} +3 a^{-4} +3 a^{-6} + a^{-8} +1-2 a z^{-1} -5 a^{-1} z^{-1} -6 a^{-3} z^{-1} -4 a^{-5} z^{-1} - a^{-7} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012345χ
14         2-2
12        3 3
10       42 -2
8      53  2
6     44   0
4    55    0
2   46     2
0  13      -2
-2 14       3
-4 1        -1
-61         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n113.gif

L11n113

L11n115.gif

L11n115