# L11n114

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11n114 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $\frac{(t(1)-1) (t(2)-1) \left(t(2)^4-2 t(2)^3+t(2)^2-2 t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}}$ (db) Jones polynomial $7 q^{9/2}-9 q^{7/2}+9 q^{5/2}-\frac{1}{q^{5/2}}-9 q^{3/2}+\frac{2}{q^{3/2}}+2 q^{13/2}-5 q^{11/2}+7 \sqrt{q}-\frac{5}{\sqrt{q}}$ (db) Signature 3 (db) HOMFLY-PT polynomial $z a^{-7} + a^{-7} z^{-1} -z^5 a^{-5} -4 z^3 a^{-5} -6 z a^{-5} -4 a^{-5} z^{-1} +z^7 a^{-3} +5 z^5 a^{-3} +10 z^3 a^{-3} +12 z a^{-3} +6 a^{-3} z^{-1} -2 z^5 a^{-1} +a z^3-8 z^3 a^{-1} +3 a z-10 z a^{-1} +2 a z^{-1} -5 a^{-1} z^{-1}$ (db) Kauffman polynomial $-z^9 a^{-1} -z^9 a^{-3} -7 z^8 a^{-2} -5 z^8 a^{-4} -2 z^8-a z^7-3 z^7 a^{-1} -10 z^7 a^{-3} -8 z^7 a^{-5} +23 z^6 a^{-2} +10 z^6 a^{-4} -5 z^6 a^{-6} +8 z^6+5 a z^5+26 z^5 a^{-1} +47 z^5 a^{-3} +25 z^5 a^{-5} -z^5 a^{-7} -16 z^4 a^{-2} +2 z^4 a^{-4} +9 z^4 a^{-6} -9 z^4-9 a z^3-41 z^3 a^{-1} -58 z^3 a^{-3} -31 z^3 a^{-5} -5 z^3 a^{-7} -8 z^2 a^{-4} -9 z^2 a^{-6} -3 z^2 a^{-8} +2 z^2+7 a z+24 z a^{-1} +31 z a^{-3} +18 z a^{-5} +4 z a^{-7} + a^{-2} +3 a^{-4} +3 a^{-6} + a^{-8} +1-2 a z^{-1} -5 a^{-1} z^{-1} -6 a^{-3} z^{-1} -4 a^{-5} z^{-1} - a^{-7} z^{-1}$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-4-3-2-1012345χ
14         2-2
12        3 3
10       42 -2
8      53  2
6     44   0
4    55    0
2   46     2
0  13      -2
-2 14       3
-4 1        -1
-61         1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=2$ $i=4$ $r=-4$ ${\mathbb Z}$ $r=-3$ ${\mathbb Z}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-2$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-1$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=0$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{5}$ $r=1$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=2$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=3$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=4$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=5$ ${\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.