L11n117

From Knot Atlas
Jump to: navigation, search

L11n116.gif

L11n116

L11n118.gif

L11n118

Contents

L11n117.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n117 at Knotilus!


Link Presentations

[edit Notes on L11n117's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X17,21,18,20 X13,19,14,18 X19,15,20,14 X4,21,1,22 X10,5,11,6 X12,3,13,4 X22,11,5,12 X2,9,3,10 X8,15,9,16
Gauss code {1, -10, 8, -6}, {7, -1, 2, -11, 10, -7, 9, -8, -4, 5, 11, -2, -3, 4, -5, 3, 6, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n117 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(2)^5+2 t(1) t(2)^4-4 t(2)^4-3 t(1) t(2)^3+5 t(2)^3+5 t(1) t(2)^2-3 t(2)^2-4 t(1) t(2)+2 t(2)+t(1)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial 2 \sqrt{q}-\frac{5}{\sqrt{q}}+\frac{7}{q^{3/2}}-\frac{10}{q^{5/2}}+\frac{9}{q^{7/2}}-\frac{10}{q^{9/2}}+\frac{8}{q^{11/2}}-\frac{5}{q^{13/2}}+\frac{3}{q^{15/2}}-\frac{1}{q^{17/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial z^3 a^7+z a^7-a^7 z^{-1} -z^5 a^5-z^3 a^5+3 z a^5+4 a^5 z^{-1} -2 z^5 a^3-7 z^3 a^3-9 z a^3-4 a^3 z^{-1} +2 z^3 a+3 z a+a z^{-1} (db)
Kauffman polynomial -z^7 a^9+4 z^5 a^9-5 z^3 a^9+2 z a^9-3 z^8 a^8+13 z^6 a^8-17 z^4 a^8+6 z^2 a^8+a^8-2 z^9 a^7+3 z^7 a^7+10 z^5 a^7-16 z^3 a^7+5 z a^7-a^7 z^{-1} -9 z^8 a^6+32 z^6 a^6-28 z^4 a^6+3 z^2 a^6+4 a^6-2 z^9 a^5-4 z^7 a^5+30 z^5 a^5-31 z^3 a^5+13 z a^5-4 a^5 z^{-1} -6 z^8 a^4+14 z^6 a^4-2 z^4 a^4-10 z^2 a^4+7 a^4-8 z^7 a^3+23 z^5 a^3-25 z^3 a^3+14 z a^3-4 a^3 z^{-1} -5 z^6 a^2+9 z^4 a^2-10 z^2 a^2+4 a^2-z^5 a-5 z^3 a+4 z a-a z^{-1} -3 z^2+1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-101χ
2         2-2
0        3 3
-2       53 -2
-4      52  3
-6     45   1
-8    65    1
-10   35     2
-12  25      -3
-14 13       2
-16 2        -2
-181         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n116.gif

L11n116

L11n118.gif

L11n118