L11n119

From Knot Atlas
Jump to: navigation, search

L11n118.gif

L11n118

L11n120.gif

L11n120

Contents

L11n119.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n119 at Knotilus!


Link Presentations

[edit Notes on L11n119's Link Presentations]

Planar diagram presentation X6172 X3,15,4,14 X16,10,17,9 X11,21,12,20 X21,9,22,8 X7,19,8,18 X19,13,20,12 X10,16,11,15 X17,5,18,22 X2536 X13,1,14,4
Gauss code {1, -10, -2, 11}, {10, -1, -6, 5, 3, -8, -4, 7, -11, 2, 8, -3, -9, 6, -7, 4, -5, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n119 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1) \left(2 v^2-v+2\right)}{\sqrt{u} v^{3/2}} (db)
Jones polynomial 7 q^{9/2}-7 q^{7/2}+4 q^{5/2}-3 q^{3/2}+2 q^{17/2}-4 q^{15/2}+6 q^{13/2}-7 q^{11/2} (db)
Signature 3 (db)
HOMFLY-PT polynomial -2 z^5 a^{-5} +3 z^3 a^{-3} -8 z^3 a^{-5} +2 z^3 a^{-7} +7 z a^{-3} -11 z a^{-5} +4 z a^{-7} +3 a^{-3} z^{-1} -5 a^{-5} z^{-1} +2 a^{-7} z^{-1} (db)
Kauffman polynomial 3 z^4 a^{-10} -5 z^2 a^{-10} + a^{-10} +z^7 a^{-9} +z^5 a^{-9} -4 z^3 a^{-9} +z^8 a^{-8} +z^6 a^{-8} -3 z^4 a^{-8} +5 z^7 a^{-7} -11 z^5 a^{-7} +12 z^3 a^{-7} -7 z a^{-7} +2 a^{-7} z^{-1} +z^8 a^{-6} +4 z^6 a^{-6} -12 z^4 a^{-6} +14 z^2 a^{-6} -5 a^{-6} +4 z^7 a^{-5} -12 z^5 a^{-5} +22 z^3 a^{-5} -17 z a^{-5} +5 a^{-5} z^{-1} +3 z^6 a^{-4} -6 z^4 a^{-4} +9 z^2 a^{-4} -5 a^{-4} +6 z^3 a^{-3} -10 z a^{-3} +3 a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
01234567χ
18       2-2
16      2 2
14     42 -2
12    32  1
10   44   0
8  33    0
6 14     3
423      -1
23       3
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=0 {\mathbb Z}^{3} {\mathbb Z}^{2}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n118.gif

L11n118

L11n120.gif

L11n120