L11n120

From Knot Atlas
Jump to: navigation, search

L11n119.gif

L11n119

L11n121.gif

L11n121

Contents

L11n120.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n120 at Knotilus!


Link Presentations

[edit Notes on L11n120's Link Presentations]

Planar diagram presentation X6172 X14,3,15,4 X9,16,10,17 X11,21,12,20 X21,9,22,8 X7,19,8,18 X19,13,20,12 X15,10,16,11 X17,5,18,22 X2536 X4,13,1,14
Gauss code {1, -10, 2, -11}, {10, -1, -6, 5, -3, 8, -4, 7, 11, -2, -8, 3, -9, 6, -7, 4, -5, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n120 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(2)^5-t(1) t(2)^4-3 t(2)^4+2 t(1) t(2)^3+2 t(2)^2-3 t(1) t(2)-t(2)+t(1)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial q^{9/2}-2 q^{7/2}+2 q^{5/2}-q^{3/2}-\frac{2}{q^{3/2}}+\frac{2}{q^{5/2}}-\frac{3}{q^{7/2}}+\frac{2}{q^{9/2}}-\frac{1}{q^{11/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial a^5 z+a^5 z^{-1} -2 a^3 z^3+z^3 a^{-3} -5 a^3 z-2 a^3 z^{-1} +2 z a^{-3} + a^{-3} z^{-1} +a z^5-z^5 a^{-1} +5 a z^3-5 z^3 a^{-1} +7 a z+3 a z^{-1} -7 z a^{-1} -3 a^{-1} z^{-1} (db)
Kauffman polynomial a^5 z^7-5 a^5 z^5+7 a^5 z^3-4 a^5 z+a^5 z^{-1} +2 a^4 z^8-10 a^4 z^6+z^6 a^{-4} +12 a^4 z^4-4 z^4 a^{-4} -4 a^4 z^2+3 z^2 a^{-4} - a^{-4} +a^3 z^9-3 a^3 z^7+2 z^7 a^{-3} -6 a^3 z^5-9 z^5 a^{-3} +16 a^3 z^3+8 z^3 a^{-3} -10 a^3 z-3 z a^{-3} +2 a^3 z^{-1} + a^{-3} z^{-1} +3 a^2 z^8+z^8 a^{-2} -18 a^2 z^6-4 z^6 a^{-2} +27 a^2 z^4-z^4 a^{-2} -13 a^2 z^2+6 z^2 a^{-2} +2 a^2-2 a^{-2} +a z^9-4 a z^7+2 z^7 a^{-1} -6 a z^5-14 z^5 a^{-1} +23 a z^3+22 z^3 a^{-1} -16 a z-13 z a^{-1} +3 a z^{-1} +3 a^{-1} z^{-1} +2 z^8-13 z^6+18 z^4-6 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
10           1-1
8          1 1
6         11 0
4       221  -1
2      111   1
0     242    0
-2    222     2
-4   121      0
-6  221       1
-8 12         1
-10 1          -1
-121           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0 i=2
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n119.gif

L11n119

L11n121.gif

L11n121