L11n121

From Knot Atlas
Jump to: navigation, search

L11n120.gif

L11n120

L11n122.gif

L11n122

Contents

L11n121.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n121 at Knotilus!


Link Presentations

[edit Notes on L11n121's Link Presentations]

Planar diagram presentation X6172 X14,3,15,4 X16,10,17,9 X11,21,12,20 X21,9,22,8 X7,19,8,18 X19,13,20,12 X10,16,11,15 X17,5,18,22 X2536 X4,13,1,14
Gauss code {1, -10, 2, -11}, {10, -1, -6, 5, 3, -8, -4, 7, 11, -2, 8, -3, -9, 6, -7, 4, -5, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n121 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{-u v^4+2 u v^3-2 u v^2+u v+u+v^5+v^4-2 v^3+2 v^2-v}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -q^{13/2}+3 q^{11/2}-3 q^{9/2}+4 q^{7/2}-4 q^{5/2}+3 q^{3/2}-3 \sqrt{q}-\frac{1}{q^{5/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^3 a^{-5} -z a^{-5} +z^5 a^{-3} +4 z^3 a^{-3} +6 z a^{-3} +2 a^{-3} z^{-1} -z^5 a^{-1} +a z^3-7 z^3 a^{-1} +4 a z-11 z a^{-1} +3 a z^{-1} -5 a^{-1} z^{-1} (db)
Kauffman polynomial -a z^7-z^7 a^{-3} -2 z^7 a^{-5} -z^6 a^{-2} -4 z^6 a^{-4} -3 z^6 a^{-6} +7 a z^5+3 z^5 a^{-1} +2 z^5 a^{-3} +5 z^5 a^{-5} -z^5 a^{-7} +4 z^4 a^{-2} +10 z^4 a^{-4} +9 z^4 a^{-6} +3 z^4-14 a z^3-14 z^3 a^{-1} -4 z^3 a^{-3} -2 z^3 a^{-5} +2 z^3 a^{-7} -10 z^2 a^{-2} -5 z^2 a^{-4} -4 z^2 a^{-6} -9 z^2+10 a z+14 z a^{-1} +5 z a^{-3} +z a^{-5} +5 a^{-2} - a^{-6} +5-3 a z^{-1} -5 a^{-1} z^{-1} -2 a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-10123456χ
14          11
12         2 -2
10        11 0
8       32  -1
6     121   0
4     23    1
2   132     0
0    3      3
-2  11       0
-41          1
-61          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2 i=4
r=-4 {\mathbb Z} {\mathbb Z}
r=-3
r=-2 {\mathbb Z}
r=-1 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n120.gif

L11n120

L11n122.gif

L11n122