L11n124

From Knot Atlas
Jump to: navigation, search

L11n123.gif

L11n123

L11n125.gif

L11n125

Contents

L11n124.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n124 at Knotilus!


Link Presentations

[edit Notes on L11n124's Link Presentations]

Planar diagram presentation X6172 X3,15,4,14 X9,22,10,5 X7,19,8,18 X17,9,18,8 X19,13,20,12 X11,21,12,20 X15,10,16,11 X21,16,22,17 X2536 X13,1,14,4
Gauss code {1, -10, -2, 11}, {10, -1, -4, 5, -3, 8, -7, 6, -11, 2, -8, 9, -5, 4, -6, 7, -9, 3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n124 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1) \left(2 v^2-3 v+2\right)}{\sqrt{u} v^{3/2}} (db)
Jones polynomial 3 q^{9/2}-6 q^{7/2}+\frac{1}{q^{7/2}}+8 q^{5/2}-\frac{4}{q^{5/2}}-9 q^{3/2}+\frac{6}{q^{3/2}}-q^{11/2}+9 \sqrt{q}-\frac{9}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -2 z^5 a^{-1} +3 a z^3-7 z^3 a^{-1} +3 z^3 a^{-3} -a^3 z+5 a z-9 z a^{-1} +6 z a^{-3} -z a^{-5} +2 a z^{-1} -4 a^{-1} z^{-1} +3 a^{-3} z^{-1} - a^{-5} z^{-1} (db)
Kauffman polynomial -2 z^9 a^{-1} -2 z^9 a^{-3} -10 z^8 a^{-2} -3 z^8 a^{-4} -7 z^8-7 a z^7-5 z^7 a^{-1} +z^7 a^{-3} -z^7 a^{-5} -2 a^2 z^6+39 z^6 a^{-2} +12 z^6 a^{-4} +25 z^6+25 a z^5+42 z^5 a^{-1} +21 z^5 a^{-3} +4 z^5 a^{-5} +a^2 z^4-42 z^4 a^{-2} -14 z^4 a^{-4} -27 z^4-4 a^3 z^3-32 a z^3-56 z^3 a^{-1} -34 z^3 a^{-3} -6 z^3 a^{-5} -a^4 z^2+17 z^2 a^{-2} +6 z^2 a^{-4} +12 z^2+3 a^3 z+15 a z+26 z a^{-1} +18 z a^{-3} +4 z a^{-5} -a^2-3 a^{-2} - a^{-4} -2-2 a z^{-1} -4 a^{-1} z^{-1} -3 a^{-3} z^{-1} - a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-10123456χ
12         11
10        2 -2
8       41 3
6      42  -2
4     54   1
2   154    0
0   55     0
-2  36      3
-4 13       -2
-6 3        3
-81         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0 i=2
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5} {\mathbb Z}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n123.gif

L11n123

L11n125.gif

L11n125