L11n132

From Knot Atlas
Jump to: navigation, search

L11n131.gif

L11n131

L11n133.gif

L11n133

Contents

L11n132.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n132 at Knotilus!


Link Presentations

[edit Notes on L11n132's Link Presentations]

Planar diagram presentation X8192 X18,11,19,12 X3,10,4,11 X17,3,18,2 X12,5,13,6 X6718 X9,16,10,17 X13,20,14,21 X15,22,16,7 X4,20,5,19 X21,14,22,15
Gauss code {1, 4, -3, -10, 5, -6}, {6, -1, -7, 3, 2, -5, -8, 11, -9, 7, -4, -2, 10, 8, -11, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n132 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1) t(2)^4-t(1)^2 t(2)^3+t(1)^2 t(2)^2-t(1) t(2)^2+t(2)^2-t(2)+t(1)}{t(1) t(2)^2} (db)
Jones polynomial -\frac{1}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{21/2}}-\frac{1}{q^{19/2}}+\frac{1}{q^{17/2}}-\frac{1}{q^{15/2}}+\frac{1}{q^{13/2}}-\frac{1}{q^{11/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -z^3 a^9-3 z a^9-2 a^9 z^{-1} +z^5 a^7+6 z^3 a^7+11 z a^7+5 a^7 z^{-1} -z^5 a^5-6 z^3 a^5-9 z a^5-3 a^5 z^{-1} (db)
Kauffman polynomial -z^6 a^{12}+5 z^4 a^{12}-6 z^2 a^{12}+a^{12}-z^7 a^{11}+5 z^5 a^{11}-6 z^3 a^{11}+z a^{11}-z^6 a^{10}+4 z^4 a^{10}-3 z^2 a^{10}-z^5 a^9+4 z^3 a^9-4 z a^9+2 a^9 z^{-1} +z^6 a^8-7 z^4 a^8+13 z^2 a^8-5 a^8+z^7 a^7-7 z^5 a^7+16 z^3 a^7-15 z a^7+5 a^7 z^{-1} +z^6 a^6-6 z^4 a^6+10 z^2 a^6-5 a^6-z^5 a^5+6 z^3 a^5-10 z a^5+3 a^5 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-4         11
-6       1 12
-8      12  1
-10     1    1
-12    121   0
-14   11     0
-16   11     0
-18 11       0
-20          0
-221         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4 i=-2
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=-1
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n131.gif

L11n131

L11n133.gif

L11n133