L11n139

From Knot Atlas
Jump to: navigation, search

L11n138.gif

L11n138

L11n140.gif

L11n140

Contents

L11n139.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n139 at Knotilus!


Link Presentations

[edit Notes on L11n139's Link Presentations]

Planar diagram presentation X8192 X11,19,12,18 X3,10,4,11 X17,3,18,2 X5,13,6,12 X6718 X16,10,17,9 X20,16,21,15 X22,14,7,13 X14,22,15,21 X19,4,20,5
Gauss code {1, 4, -3, 11, -5, -6}, {6, -1, 7, 3, -2, 5, 9, -10, 8, -7, -4, 2, -11, -8, 10, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n139 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^2 v^2-u^2 v+u v^2-u v+u-v+1}{u v} (db)
Jones polynomial q^{13/2}-q^{11/2}+q^{9/2}-q^{7/2}-\sqrt{q}-\frac{1}{q^{3/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial z^3 a^{-5} +3 z a^{-5} + a^{-5} z^{-1} -z^5 a^{-3} -5 z^3 a^{-3} -6 z a^{-3} -2 a^{-3} z^{-1} +a z+z a^{-1} +a z^{-1} (db)
Kauffman polynomial z^8 a^{-6} -7 z^6 a^{-6} +15 z^4 a^{-6} -11 z^2 a^{-6} +2 a^{-6} +z^9 a^{-5} -7 z^7 a^{-5} +15 z^5 a^{-5} -12 z^3 a^{-5} +4 z a^{-5} - a^{-5} z^{-1} +2 z^8 a^{-4} -14 z^6 a^{-4} +29 z^4 a^{-4} -21 z^2 a^{-4} +5 a^{-4} +z^9 a^{-3} -7 z^7 a^{-3} +15 z^5 a^{-3} -14 z^3 a^{-3} +8 z a^{-3} -2 a^{-3} z^{-1} +z^8 a^{-2} -7 z^6 a^{-2} +14 z^4 a^{-2} -10 z^2 a^{-2} +3 a^{-2} +a z^3-z^3 a^{-1} -3 a z+z a^{-1} +a z^{-1} -1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-101234567χ
14         1-1
12          0
10       11 0
8     11   0
6      1   1
4   121    0
2  1       1
0  21      1
-21         1
-41         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0 i=2
r=-2 {\mathbb Z} {\mathbb Z}
r=-1
r=0 {\mathbb Z}^{2} {\mathbb Z}
r=1 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}^{2}
r=3 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}
r=6 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n138.gif

L11n138

L11n140.gif

L11n140