L11n141

From Knot Atlas
Jump to: navigation, search

L11n140.gif

L11n140

L11n142.gif

L11n142

Contents

L11n141.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n141 at Knotilus!


Link Presentations

[edit Notes on L11n141's Link Presentations]

Planar diagram presentation X8192 X18,11,19,12 X3,10,4,11 X2,17,3,18 X12,5,13,6 X6718 X9,16,10,17 X15,20,16,21 X13,22,14,7 X21,14,22,15 X19,4,20,5
Gauss code {1, -4, -3, 11, 5, -6}, {6, -1, -7, 3, 2, -5, -9, 10, -8, 7, 4, -2, -11, 8, -10, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n141 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 t(1)^2 t(2)^4-t(1)^2 t(2)^3+t(1) t(2)^2-t(2)+2}{t(1) t(2)^2} (db)
Jones polynomial \frac{1}{q^{9/2}}-\frac{1}{q^{7/2}}+\frac{1}{q^{21/2}}-\frac{1}{q^{19/2}}+\frac{1}{q^{17/2}}-\frac{2}{q^{15/2}}+\frac{1}{q^{13/2}}-\frac{2}{q^{11/2}} (db)
Signature -7 (db)
HOMFLY-PT polynomial -z a^{13}-a^{13} z^{-1} +z^5 a^{11}+6 z^3 a^{11}+8 z a^{11}+2 a^{11} z^{-1} -z^7 a^9-6 z^5 a^9-10 z^3 a^9-5 z a^9-z^7 a^7-6 z^5 a^7-10 z^3 a^7-5 z a^7-a^7 z^{-1} (db)
Kauffman polynomial z^2 a^{14}-2 a^{14}+z^3 a^{13}-2 z a^{13}+a^{13} z^{-1} -z^8 a^{12}+7 z^6 a^{12}-16 z^4 a^{12}+16 z^2 a^{12}-5 a^{12}-z^9 a^{11}+7 z^7 a^{11}-17 z^5 a^{11}+20 z^3 a^{11}-10 z a^{11}+2 a^{11} z^{-1} -2 z^8 a^{10}+12 z^6 a^{10}-21 z^4 a^{10}+14 z^2 a^{10}-3 a^{10}-z^9 a^9+6 z^7 a^9-11 z^5 a^9+9 z^3 a^9-3 z a^9-z^8 a^8+5 z^6 a^8-5 z^4 a^8-z^2 a^8+a^8-z^7 a^7+6 z^5 a^7-10 z^3 a^7+5 z a^7-a^7 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
-6       11
-8      110
-10     1  1
-12   111  1
-14   21   1
-16 111    1
-18 22     0
-20        0
-221       -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-8 i=-6 i=-4
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=-5 {\mathbb Z}^{2} {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n140.gif

L11n140

L11n142.gif

L11n142