L11n145

From Knot Atlas
Jump to: navigation, search

L11n144.gif

L11n144

L11n146.gif

L11n146

Contents

L11n145.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n145 at Knotilus!


Link Presentations

[edit Notes on L11n145's Link Presentations]

Planar diagram presentation X8192 X18,11,19,12 X10,4,11,3 X2,17,3,18 X12,5,13,6 X6718 X16,10,17,9 X15,20,16,21 X13,22,14,7 X21,14,22,15 X4,20,5,19
Gauss code {1, -4, 3, -11, 5, -6}, {6, -1, 7, -3, 2, -5, -9, 10, -8, -7, 4, -2, 11, 8, -10, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n145 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1)^2 t(2)^4-t(1) t(2)^4-3 t(1)^2 t(2)^3+4 t(1) t(2)^3-t(2)^3+3 t(1)^2 t(2)^2-5 t(1) t(2)^2+3 t(2)^2-t(1)^2 t(2)+4 t(1) t(2)-3 t(2)-t(1)+1}{t(1) t(2)^2} (db)
Jones polynomial q^{3/2}-4 \sqrt{q}+\frac{6}{\sqrt{q}}-\frac{9}{q^{3/2}}+\frac{10}{q^{5/2}}-\frac{11}{q^{7/2}}+\frac{9}{q^{9/2}}-\frac{7}{q^{11/2}}+\frac{4}{q^{13/2}}-\frac{1}{q^{15/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -a^3 z^7+a^5 z^5-4 a^3 z^5+a z^5+2 a^5 z^3-4 a^3 z^3+2 a z^3-a z+a^3 z^{-1} -a z^{-1} (db)
Kauffman polynomial -z^3 a^9-4 z^4 a^8+2 z^2 a^8-z^7 a^7-3 z^5 a^7+2 z^3 a^7-3 z^8 a^6+7 z^6 a^6-12 z^4 a^6+6 z^2 a^6-2 z^9 a^5+2 z^7 a^5-8 z^8 a^4+23 z^6 a^4-20 z^4 a^4+6 z^2 a^4-2 z^9 a^3-z^7 a^3+15 z^5 a^3-10 z^3 a^3-z a^3+a^3 z^{-1} -5 z^8 a^2+15 z^6 a^2-10 z^4 a^2+2 z^2 a^2-a^2-4 z^7 a+12 z^5 a-7 z^3 a-z a+a z^{-1} -z^6+2 z^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-10123χ
4         1-1
2        3 3
0       31 -2
-2      63  3
-4     54   -1
-6    65    1
-8   46     2
-10  35      -2
-12 14       3
-14 3        -3
-161         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n144.gif

L11n144

L11n146.gif

L11n146