L11n146

From Knot Atlas
Jump to: navigation, search

L11n145.gif

L11n145

L11n147.gif

L11n147

Contents

L11n146.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n146 at Knotilus!


Link Presentations

[edit Notes on L11n146's Link Presentations]

Planar diagram presentation X8192 X9,19,10,18 X6718 X19,7,20,22 X5,13,6,12 X3,10,4,11 X15,5,16,4 X11,16,12,17 X13,21,14,20 X21,15,22,14 X17,2,18,3
Gauss code {1, 11, -6, 7, -5, -3}, {3, -1, -2, 6, -8, 5, -9, 10, -7, 8, -11, 2, -4, 9, -10, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n146 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)+t(2)-1) (t(2) t(1)-t(1)-t(2)) \left(t(2)^2-t(2)+1\right)}{t(1) t(2)^2} (db)
Jones polynomial -q^{9/2}+\frac{1}{q^{9/2}}+4 q^{7/2}-\frac{3}{q^{7/2}}-6 q^{5/2}+\frac{5}{q^{5/2}}+8 q^{3/2}-\frac{8}{q^{3/2}}-10 \sqrt{q}+\frac{8}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -a^3 z^3-z^3 a^{-3} -a^3 z+ a^{-3} z^{-1} +a z^5+z^5 a^{-1} +2 a z^3+z^3 a^{-1} +2 a z-2 z a^{-1} +2 a z^{-1} -3 a^{-1} z^{-1} (db)
Kauffman polynomial z^3 a^{-5} +a^4 z^6-3 a^4 z^4+4 z^4 a^{-4} +2 a^4 z^2-2 z^2 a^{-4} - a^{-4} +3 a^3 z^7+z^7 a^{-3} -10 a^3 z^5+2 z^5 a^{-3} +9 a^3 z^3-z^3 a^{-3} -3 a^3 z+ a^{-3} z^{-1} +3 a^2 z^8+2 z^8 a^{-2} -7 a^2 z^6-3 z^6 a^{-2} +5 z^4 a^{-2} +3 a^2 z^2-3 a^{-2} +a z^9+z^9 a^{-1} +4 a z^7+2 z^7 a^{-1} -19 a z^5-7 z^5 a^{-1} +18 a z^3+7 z^3 a^{-1} -8 a z-5 z a^{-1} +2 a z^{-1} +3 a^{-1} z^{-1} +5 z^8-11 z^6+4 z^4+3 z^2-3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
10         11
8        3 -3
6       31 2
4      53  -2
2     53   2
0    46    2
-2   44     0
-4  25      3
-6 13       -2
-8 2        2
-101         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n145.gif

L11n145

L11n147.gif

L11n147