L11n147

From Knot Atlas
Jump to: navigation, search

L11n146.gif

L11n146

L11n148.gif

L11n148

Contents

L11n147.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n147 at Knotilus!


Link Presentations

[edit Notes on L11n147's Link Presentations]

Planar diagram presentation X8192 X18,9,19,10 X6718 X22,19,7,20 X5,13,6,12 X3,10,4,11 X15,5,16,4 X11,16,12,17 X20,13,21,14 X14,21,15,22 X17,2,18,3
Gauss code {1, 11, -6, 7, -5, -3}, {3, -1, 2, 6, -8, 5, 9, -10, -7, 8, -11, -2, 4, -9, 10, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n147 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u^2 v^4-2 u^2 v^3+2 u^2 v^2-u^2 v-u v^4+u v^3-u v^2+u v-u-v^3+2 v^2-2 v+1}{u v^2} (db)
Jones polynomial -\frac{1}{\sqrt{q}}+\frac{2}{q^{3/2}}-\frac{4}{q^{5/2}}+\frac{4}{q^{7/2}}-\frac{6}{q^{9/2}}+\frac{5}{q^{11/2}}-\frac{5}{q^{13/2}}+\frac{4}{q^{15/2}}-\frac{2}{q^{17/2}}+\frac{1}{q^{19/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial -a^9 z^{-1} -a^7 z^5-3 a^7 z^3+2 a^7 z^{-1} +a^5 z^7+5 a^5 z^5+7 a^5 z^3+3 a^5 z-a^3 z^5-4 a^3 z^3-4 a^3 z-a^3 z^{-1} (db)
Kauffman polynomial a^{12} z^2+2 a^{11} z^3+4 a^{10} z^4-5 a^{10} z^2+2 a^{10}+a^9 z^7-3 a^9 z^3+2 a^9 z-a^9 z^{-1} +2 a^8 z^8-7 a^8 z^6+11 a^8 z^4-13 a^8 z^2+5 a^8+a^7 z^9-a^7 z^7-5 a^7 z^5+3 a^7 z^3+2 a^7 z-2 a^7 z^{-1} +4 a^6 z^8-16 a^6 z^6+17 a^6 z^4-8 a^6 z^2+3 a^6+a^5 z^9-a^5 z^7-10 a^5 z^5+16 a^5 z^3-5 a^5 z+2 a^4 z^8-9 a^4 z^6+10 a^4 z^4-a^4 z^2-a^4+a^3 z^7-5 a^3 z^5+8 a^3 z^3-5 a^3 z+a^3 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
0         11
-2        1 -1
-4       31 2
-6      22  0
-8     42   2
-10    23    1
-12   33     0
-14  12      1
-16 13       -2
-18 1        1
-201         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n146.gif

L11n146

L11n148.gif

L11n148