L11n152

From Knot Atlas
Jump to: navigation, search

L11n151.gif

L11n151

L11n153.gif

L11n153

Contents

L11n152.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n152 at Knotilus!


Link Presentations

[edit Notes on L11n152's Link Presentations]

Planar diagram presentation X8192 X18,9,19,10 X6718 X19,7,20,22 X12,5,13,6 X10,4,11,3 X4,15,5,16 X16,12,17,11 X13,21,14,20 X21,15,22,14 X2,18,3,17
Gauss code {1, -11, 6, -7, 5, -3}, {3, -1, 2, -6, 8, -5, -9, 10, 7, -8, 11, -2, -4, 9, -10, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n152 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1) t(2)^4-t(2)^4-3 t(1) t(2)^3+2 t(2)^3-t(1)^2 t(2)^2+3 t(1) t(2)^2-t(2)^2+2 t(1)^2 t(2)-3 t(1) t(2)-t(1)^2+t(1)}{t(1) t(2)^2} (db)
Jones polynomial 2 q^{7/2}-4 q^{5/2}+5 q^{3/2}-7 \sqrt{q}+\frac{6}{\sqrt{q}}-\frac{6}{q^{3/2}}+\frac{4}{q^{5/2}}-\frac{3}{q^{7/2}}+\frac{1}{q^{9/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial a z^5-a^3 z^3+3 a z^3-3 z^3 a^{-1} -a^3 z+4 a z-6 z a^{-1} +2 z a^{-3} +2 a z^{-1} -3 a^{-1} z^{-1} + a^{-3} z^{-1} (db)
Kauffman polynomial a^4 z^6-3 a^4 z^4+a^4 z^2+2 z^2 a^{-4} - a^{-4} +3 a^3 z^7-11 a^3 z^5+z^5 a^{-3} +9 a^3 z^3+2 z^3 a^{-3} -2 a^3 z-3 z a^{-3} + a^{-3} z^{-1} +3 a^2 z^8+z^8 a^{-2} -10 a^2 z^6-3 z^6 a^{-2} +6 a^2 z^4+4 z^4 a^{-2} +3 z^2 a^{-2} -3 a^{-2} +a z^9+z^9 a^{-1} +a z^7-2 z^7 a^{-1} -14 a z^5-2 z^5 a^{-1} +18 a z^3+11 z^3 a^{-1} -9 a z-10 z a^{-1} +2 a z^{-1} +3 a^{-1} z^{-1} +4 z^8-14 z^6+13 z^4-3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123χ
8        2-2
6       2 2
4      32 -1
2     42  2
0    34   1
-2   33    0
-4  24     2
-6 12      -1
-8 2       2
-101        -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n151.gif

L11n151

L11n153.gif

L11n153