L11n156

From Knot Atlas
Jump to: navigation, search

L11n155.gif

L11n155

L11n157.gif

L11n157

Contents

L11n156.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n156 at Knotilus!


Link Presentations

[edit Notes on L11n156's Link Presentations]

Planar diagram presentation X8192 X2,9,3,10 X10,3,11,4 X11,21,12,20 X5,12,6,13 X19,4,20,5 X14,18,15,17 X16,8,17,7 X22,16,7,15 X18,14,19,13 X6,21,1,22
Gauss code {1, -2, 3, 6, -5, -11}, {8, -1, 2, -3, -4, 5, 10, -7, 9, -8, 7, -10, -6, 4, 11, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n156 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^2 v^3-2 u^2 v^2+2 u^2 v+2 u v^4-4 u v^3+5 u v^2-4 u v+2 u+2 v^3-2 v^2+v}{u v^2} (db)
Jones polynomial 2 q^{5/2}-4 q^{3/2}+6 \sqrt{q}-\frac{9}{\sqrt{q}}+\frac{9}{q^{3/2}}-\frac{9}{q^{5/2}}+\frac{7}{q^{7/2}}-\frac{5}{q^{9/2}}+\frac{2}{q^{11/2}}-\frac{1}{q^{13/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^5 z^3+2 a^5 z+a^5 z^{-1} -a^3 z^5-2 a^3 z^3-a^3 z-2 a z^5-7 a z^3+2 z^3 a^{-1} -8 a z-2 a z^{-1} +4 z a^{-1} + a^{-1} z^{-1} (db)
Kauffman polynomial -a^3 z^9-a z^9-2 a^4 z^8-4 a^2 z^8-2 z^8-3 a^5 z^7-a^3 z^7+a z^7-z^7 a^{-1} -2 a^6 z^6+a^4 z^6+9 a^2 z^6+6 z^6-a^7 z^5+7 a^5 z^5+2 a^3 z^5-7 a z^5-z^5 a^{-1} +4 a^6 z^4+3 a^4 z^4-14 a^2 z^4-3 z^4 a^{-2} -16 z^4+3 a^7 z^3-7 a^5 z^3-2 a^3 z^3+13 a z^3+5 z^3 a^{-1} -a^6 z^2-3 a^4 z^2+10 a^2 z^2+6 z^2 a^{-2} +18 z^2-2 a^7 z+5 a^5 z+a^3 z-10 a z-4 z a^{-1} +a^4-3 a^2-2 a^{-2} -5-a^5 z^{-1} +2 a z^{-1} + a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-10123χ
6         2-2
4        2 2
2       42 -2
0      52  3
-2     55   0
-4    44    0
-6   35     2
-8  24      -2
-10  3       3
-1212        -1
-141         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z} {\mathbb Z}
r=-5 {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n155.gif

L11n155

L11n157.gif

L11n157