# L11n156

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11n156 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $-\frac{u^2 v^3-2 u^2 v^2+2 u^2 v+2 u v^4-4 u v^3+5 u v^2-4 u v+2 u+2 v^3-2 v^2+v}{u v^2}$ (db) Jones polynomial $2 q^{5/2}-4 q^{3/2}+6 \sqrt{q}-\frac{9}{\sqrt{q}}+\frac{9}{q^{3/2}}-\frac{9}{q^{5/2}}+\frac{7}{q^{7/2}}-\frac{5}{q^{9/2}}+\frac{2}{q^{11/2}}-\frac{1}{q^{13/2}}$ (db) Signature -1 (db) HOMFLY-PT polynomial $a^5 z^3+2 a^5 z+a^5 z^{-1} -a^3 z^5-2 a^3 z^3-a^3 z-2 a z^5-7 a z^3+2 z^3 a^{-1} -8 a z-2 a z^{-1} +4 z a^{-1} + a^{-1} z^{-1}$ (db) Kauffman polynomial $-a^3 z^9-a z^9-2 a^4 z^8-4 a^2 z^8-2 z^8-3 a^5 z^7-a^3 z^7+a z^7-z^7 a^{-1} -2 a^6 z^6+a^4 z^6+9 a^2 z^6+6 z^6-a^7 z^5+7 a^5 z^5+2 a^3 z^5-7 a z^5-z^5 a^{-1} +4 a^6 z^4+3 a^4 z^4-14 a^2 z^4-3 z^4 a^{-2} -16 z^4+3 a^7 z^3-7 a^5 z^3-2 a^3 z^3+13 a z^3+5 z^3 a^{-1} -a^6 z^2-3 a^4 z^2+10 a^2 z^2+6 z^2 a^{-2} +18 z^2-2 a^7 z+5 a^5 z+a^3 z-10 a z-4 z a^{-1} +a^4-3 a^2-2 a^{-2} -5-a^5 z^{-1} +2 a z^{-1} + a^{-1} z^{-1}$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-6-5-4-3-2-10123χ
6         2-2
4        2 2
2       42 -2
0      52  3
-2     55   0
-4    44    0
-6   35     2
-8  24      -2
-10  3       3
-1212        -1
-141         1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-2$ $i=0$ $r=-6$ ${\mathbb Z}$ ${\mathbb Z}$ $r=-5$ ${\mathbb Z}^{2}$ $r=-4$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=-3$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=-2$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=-1$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=0$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{5}$ $r=1$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=2$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=3$ ${\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.