From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n157 at Knotilus!

Link Presentations

[edit Notes on L11n157's Link Presentations]

Planar diagram presentation X8192 X2,9,3,10 X10,3,11,4 X17,15,18,14 X7,17,8,16 X15,7,16,22 X13,19,14,18 X6,20,1,19 X20,12,21,11 X12,6,13,5 X4,21,5,22
Gauss code {1, -2, 3, -11, 10, -8}, {-5, -1, 2, -3, 9, -10, -7, 4, -6, 5, -4, 7, 8, -9, 11, 6}
A Braid Representative
A Morse Link Presentation L11n157 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1)^2 t(2)^4-t(1) t(2)^4-2 t(1)^2 t(2)^3+5 t(1) t(2)^3-t(2)^3+2 t(1)^2 t(2)^2-7 t(1) t(2)^2+2 t(2)^2-t(1)^2 t(2)+5 t(1) t(2)-2 t(2)-t(1)+1}{t(1) t(2)^2} (db)
Jones polynomial -4 q^{9/2}+7 q^{7/2}-\frac{1}{q^{7/2}}-10 q^{5/2}+\frac{3}{q^{5/2}}+10 q^{3/2}-\frac{6}{q^{3/2}}+2 q^{11/2}-11 \sqrt{q}+\frac{8}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^7 a^{-1} +a z^5-5 z^5 a^{-1} +z^5 a^{-3} +3 a z^3-9 z^3 a^{-1} +2 z^3 a^{-3} +3 a z-5 z a^{-1} +z a^{-5} +a z^{-1} -2 a^{-3} z^{-1} + a^{-5} z^{-1} (db)
Kauffman polynomial 3 z^4 a^{-6} -6 z^2 a^{-6} +2 a^{-6} +z^7 a^{-5} +z^5 a^{-5} -3 z^3 a^{-5} +z a^{-5} - a^{-5} z^{-1} +2 z^8 a^{-4} -4 z^6 a^{-4} +10 z^4 a^{-4} -12 z^2 a^{-4} +5 a^{-4} +z^9 a^{-3} +2 z^7 a^{-3} +a^3 z^5-5 z^5 a^{-3} -2 a^3 z^3+6 z^3 a^{-3} +a^3 z-2 a^{-3} z^{-1} +5 z^8 a^{-2} +3 a^2 z^6-9 z^6 a^{-2} -6 a^2 z^4+9 z^4 a^{-2} +2 a^2 z^2-5 z^2 a^{-2} +3 a^{-2} +z^9 a^{-1} +4 a z^7+5 z^7 a^{-1} -7 a z^5-14 z^5 a^{-1} +3 a z^3+14 z^3 a^{-1} -3 a z-5 z a^{-1} +a z^{-1} +3 z^8-2 z^6-4 z^4+3 z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
12         2-2
10        2 2
8       52 -3
6      52  3
4     55   0
2    65    1
0   36     3
-2  35      -2
-4 14       3
-6 2        -2
-81         1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.