L11n159

From Knot Atlas
Jump to: navigation, search

L11n158.gif

L11n158

L11n160.gif

L11n160

Contents

L11n159.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n159 at Knotilus!


Link Presentations

[edit Notes on L11n159's Link Presentations]

Planar diagram presentation X8192 X7,17,8,16 X10,4,11,3 X2,15,3,16 X14,10,15,9 X11,19,12,18 X5,13,6,12 X21,1,22,6 X20,14,21,13 X17,7,18,22 X4,20,5,19
Gauss code {1, -4, 3, -11, -7, 8}, {-2, -1, 5, -3, -6, 7, 9, -5, 4, 2, -10, 6, 11, -9, -8, 10}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n159 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^2 v^4-2 u^2 v^3+u^2 v^2-u v^4+u v^2-u+v^2-2 v+1}{u v^2} (db)
Jones polynomial 2 q^{15/2}-2 q^{13/2}+2 q^{11/2}-4 q^{9/2}+2 q^{7/2}-3 q^{5/2}+2 q^{3/2}-\sqrt{q} (db)
Signature 5 (db)
HOMFLY-PT polynomial -z^7 a^{-5} +z^5 a^{-3} -5 z^5 a^{-5} +z^5 a^{-7} +4 z^3 a^{-3} -6 z^3 a^{-5} +4 z^3 a^{-7} +3 z a^{-3} -2 z a^{-5} +z a^{-7} -z a^{-9} + a^{-3} z^{-1} -2 a^{-7} z^{-1} + a^{-9} z^{-1} (db)
Kauffman polynomial -z^9 a^{-5} -z^9 a^{-7} -2 z^8 a^{-4} -3 z^8 a^{-6} -z^8 a^{-8} -z^7 a^{-3} +3 z^7 a^{-5} +4 z^7 a^{-7} +10 z^6 a^{-4} +15 z^6 a^{-6} +5 z^6 a^{-8} +5 z^5 a^{-3} +4 z^5 a^{-5} -z^5 a^{-7} -12 z^4 a^{-4} -19 z^4 a^{-6} -7 z^4 a^{-8} -7 z^3 a^{-3} -12 z^3 a^{-5} -5 z^3 a^{-7} +2 z^2 a^{-4} +8 z^2 a^{-6} +7 z^2 a^{-8} +z^2 a^{-10} +4 z a^{-3} +6 z a^{-5} +3 z a^{-7} +z a^{-9} + a^{-4} -3 a^{-6} -5 a^{-8} -2 a^{-10} - a^{-3} z^{-1} +2 a^{-7} z^{-1} + a^{-9} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-1012345χ
16       2-2
14      110
12     22 0
10    211 2
8   13   2
6  221   1
4 12     1
2 1      -1
01       1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4 i=6
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z} {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n158.gif

L11n158

L11n160.gif

L11n160