L11n165

From Knot Atlas
Jump to: navigation, search

L11n164.gif

L11n164

L11n166.gif

L11n166

Contents

L11n165.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n165 at Knotilus!


Link Presentations

[edit Notes on L11n165's Link Presentations]

Planar diagram presentation X8192 X10,3,11,4 X15,20,16,21 X14,5,15,6 X4,13,5,14 X17,22,18,7 X21,16,22,17 X19,12,20,13 X11,18,12,19 X2738 X6,9,1,10
Gauss code {1, -10, 2, -5, 4, -11}, {10, -1, 11, -2, -9, 8, 5, -4, -3, 7, -6, 9, -8, 3, -7, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n165 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^2 v^5-u^2 v^3+u^2 v^2+u v^6-u v^5+u v^3-u v+u+v^4-v^3+v}{u v^3} (db)
Jones polynomial \frac{1}{q^{9/2}}-\frac{1}{q^{7/2}}+\frac{1}{q^{27/2}}-\frac{1}{q^{25/2}}+\frac{1}{q^{23/2}}-\frac{1}{q^{21/2}}-\frac{1}{q^{15/2}}+\frac{1}{q^{13/2}}-\frac{2}{q^{11/2}} (db)
Signature -7 (db)
HOMFLY-PT polynomial -2 z a^{13}-2 a^{13} z^{-1} +z^5 a^{11}+7 z^3 a^{11}+11 z a^{11}+5 a^{11} z^{-1} -z^7 a^9-6 z^5 a^9-10 z^3 a^9-7 z a^9-3 a^9 z^{-1} -z^7 a^7-6 z^5 a^7-10 z^3 a^7-5 z a^7 (db)
Kauffman polynomial a^{16} z^6-5 a^{16} z^4+6 a^{16} z^2-a^{16}+a^{15} z^7-5 a^{15} z^5+6 a^{15} z^3-2 a^{15} z+a^{14} z^6-5 a^{14} z^4+4 a^{14} z^2-3 a^{13} z^3+4 a^{13} z-2 a^{13} z^{-1} +a^{12} z^8-8 a^{12} z^6+19 a^{12} z^4-19 a^{12} z^2+5 a^{12}+a^{11} z^9-8 a^{11} z^7+22 a^{11} z^5-31 a^{11} z^3+21 a^{11} z-5 a^{11} z^{-1} +2 a^{10} z^8-13 a^{10} z^6+24 a^{10} z^4-17 a^{10} z^2+5 a^{10}+a^9 z^9-6 a^9 z^7+11 a^9 z^5-12 a^9 z^3+10 a^9 z-3 a^9 z^{-1} +a^8 z^8-5 a^8 z^6+5 a^8 z^4+a^7 z^7-6 a^7 z^5+10 a^7 z^3-5 a^7 z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-6           11
-8          110
-10         1  1
-12       111  1
-14      121   0
-16     111    1
-18    132     0
-20   1        1
-22   11       0
-24 11         0
-26            0
-281           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-8 i=-6 i=-4
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}_2 {\mathbb Z}^{3} {\mathbb Z}
r=-5 {\mathbb Z}^{2} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n164.gif

L11n164

L11n166.gif

L11n166