L11n166

From Knot Atlas
Jump to: navigation, search

L11n165.gif

L11n165

L11n167.gif

L11n167

Contents

L11n166.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n166 at Knotilus!


Link Presentations

[edit Notes on L11n166's Link Presentations]

Planar diagram presentation X8192 X2,9,3,10 X10,3,11,4 X14,5,15,6 X11,19,12,18 X19,7,20,22 X15,21,16,20 X21,17,22,16 X17,13,18,12 X6718 X4,13,5,14
Gauss code {1, -2, 3, -11, 4, -10}, {10, -1, 2, -3, -5, 9, 11, -4, -7, 8, -9, 5, -6, 7, -8, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n166 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1)^2 t(2)^4+t(1) t(2)^4-t(1)^2 t(2)^3-t(1) t(2)^3+t(2)^3+t(1) t(2)^2+t(1)^2 t(2)-t(1) t(2)-t(2)+t(1)+1}{t(1) t(2)^2} (db)
Jones polynomial q^{7/2}-q^{5/2}+q^{3/2}-\sqrt{q}-\frac{1}{\sqrt{q}}+\frac{1}{q^{3/2}}-\frac{2}{q^{5/2}}+\frac{2}{q^{7/2}}-\frac{2}{q^{9/2}}+\frac{1}{q^{11/2}}-\frac{1}{q^{13/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -a z^7-7 a z^5+z^5 a^{-1} +a^5 z^3+a^3 z^3-15 a z^3+5 z^3 a^{-1} +2 a^5 z+a^3 z-12 a z+6 z a^{-1} +a^5 z^{-1} -2 a z^{-1} + a^{-1} z^{-1} (db)
Kauffman polynomial -a z^9-z^9 a^{-1} -a^2 z^8-z^8 a^{-2} -2 z^8-a^5 z^7+8 a z^7+7 z^7 a^{-1} -a^6 z^6-a^4 z^6+8 a^2 z^6+7 z^6 a^{-2} +15 z^6-a^7 z^5+4 a^5 z^5-20 a z^5-15 z^5 a^{-1} +3 a^6 z^4+3 a^4 z^4-18 a^2 z^4-15 z^4 a^{-2} -33 z^4+4 a^7 z^3-5 a^5 z^3+22 a z^3+13 z^3 a^{-1} -a^6 z^2-2 a^4 z^2+13 a^2 z^2+11 z^2 a^{-2} +25 z^2-3 a^7 z+4 a^5 z-13 a z-6 z a^{-1} +a^4-3 a^2-2 a^{-2} -5-a^5 z^{-1} +2 a z^{-1} + a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
8           1-1
6            0
4         11 0
2       11   0
0      1 1   2
-2     231    0
-4    1       1
-6   121      0
-8  11        0
-10  1         1
-1211          0
-141           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2 i=0
r=-6 {\mathbb Z} {\mathbb Z}
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z} {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}_2 {\mathbb Z}^{3} {\mathbb Z}
r=1 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n165.gif

L11n165

L11n167.gif

L11n167