L11n168

From Knot Atlas
Jump to: navigation, search

L11n167.gif

L11n167

L11n169.gif

L11n169

Contents

L11n168.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n168 at Knotilus!


Link Presentations

[edit Notes on L11n168's Link Presentations]

Planar diagram presentation X8192 X2,9,3,10 X10,3,11,4 X14,5,15,6 X18,11,19,12 X19,7,20,22 X15,21,16,20 X21,17,22,16 X12,17,13,18 X6718 X4,13,5,14
Gauss code {1, -2, 3, -11, 4, -10}, {10, -1, 2, -3, 5, -9, 11, -4, -7, 8, 9, -5, -6, 7, -8, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n168 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1)^2 t(2)^4-t(1) t(2)^4-t(1)^2 t(2)^3+3 t(1) t(2)^3-t(2)^3+2 t(1)^2 t(2)^2-3 t(1) t(2)^2+2 t(2)^2-t(1)^2 t(2)+3 t(1) t(2)-t(2)-t(1)+1}{t(1) t(2)^2} (db)
Jones polynomial \frac{7}{q^{9/2}}-\frac{7}{q^{7/2}}+\frac{4}{q^{5/2}}-\frac{3}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{2}{q^{17/2}}-\frac{4}{q^{15/2}}+\frac{6}{q^{13/2}}-\frac{7}{q^{11/2}}+\frac{1}{\sqrt{q}} (db)
Signature -3 (db)
HOMFLY-PT polynomial z^5 a^7+4 z^3 a^7+5 z a^7+a^7 z^{-1} -z^7 a^5-6 z^5 a^5-13 z^3 a^5-10 z a^5-a^5 z^{-1} +z^5 a^3+3 z^3 a^3+2 z a^3 (db)
Kauffman polynomial a^{11} z^5-3 a^{11} z^3+2 a^{11} z+2 a^{10} z^6-5 a^{10} z^4+2 a^{10} z^2+2 a^9 z^7-3 a^9 z^5-a^9 z^3+2 a^8 z^8-5 a^8 z^6+7 a^8 z^4-5 a^8 z^2+a^7 z^9-2 a^7 z^7+5 a^7 z^5-6 a^7 z^3+5 a^7 z-a^7 z^{-1} +3 a^6 z^8-10 a^6 z^6+18 a^6 z^4-10 a^6 z^2+a^6+a^5 z^9-4 a^5 z^7+12 a^5 z^5-14 a^5 z^3+9 a^5 z-a^5 z^{-1} +a^4 z^8-3 a^4 z^6+7 a^4 z^4-5 a^4 z^2+3 a^3 z^5-6 a^3 z^3+2 a^3 z+a^2 z^4-2 a^2 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-101χ
0         1-1
-2        2 2
-4       32 -1
-6      41  3
-8     33   0
-10    44    0
-12   23     1
-14  24      -2
-16 13       2
-18 1        -1
-201         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n167.gif

L11n167

L11n169.gif

L11n169