L11n173

From Knot Atlas
Jump to: navigation, search

L11n172.gif

L11n172

L11n174.gif

L11n174

Contents

L11n173.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n173 at Knotilus!


Link Presentations

[edit Notes on L11n173's Link Presentations]

Planar diagram presentation X8192 X10,4,11,3 X12,7,13,8 X15,7,16,22 X14,6,15,5 X6,14,1,13 X21,17,22,16 X18,10,19,9 X20,11,21,12 X4,18,5,17 X2,19,3,20
Gauss code {1, -11, 2, -10, 5, -6}, {3, -1, 8, -2, 9, -3, 6, -5, -4, 7, 10, -8, 11, -9, -7, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n173 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1)^2 t(2)^4-t(1) t(2)^4-3 t(1)^2 t(2)^3+5 t(1) t(2)^3-2 t(2)^3+4 t(1)^2 t(2)^2-9 t(1) t(2)^2+4 t(2)^2-2 t(1)^2 t(2)+5 t(1) t(2)-3 t(2)-t(1)+1}{t(1) t(2)^2} (db)
Jones polynomial -6 q^{9/2}+9 q^{7/2}-\frac{1}{q^{7/2}}-13 q^{5/2}+\frac{4}{q^{5/2}}+14 q^{3/2}-\frac{8}{q^{3/2}}+2 q^{11/2}-14 \sqrt{q}+\frac{11}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z a^{-5} +z^5 a^{-3} +z^3 a^{-3} -z a^{-3} - a^{-3} z^{-1} -z^7 a^{-1} +a z^5-4 z^5 a^{-1} +2 a z^3-5 z^3 a^{-1} +a z+ a^{-1} z^{-1} (db)
Kauffman polynomial -2 z^9 a^{-1} -2 z^9 a^{-3} -9 z^8 a^{-2} -3 z^8 a^{-4} -6 z^8-7 a z^7-7 z^7 a^{-1} -z^7 a^{-3} -z^7 a^{-5} -4 a^2 z^6+15 z^6 a^{-2} +3 z^6 a^{-4} +8 z^6-a^3 z^5+13 a z^5+17 z^5 a^{-1} -2 z^5 a^{-3} -5 z^5 a^{-5} +6 a^2 z^4-9 z^4 a^{-2} -5 z^4 a^{-4} -3 z^4 a^{-6} -z^4+a^3 z^3-6 a z^3-7 z^3 a^{-1} +9 z^3 a^{-3} +9 z^3 a^{-5} -a^2 z^2+2 z^2 a^{-2} +4 z^2 a^{-4} +3 z^2 a^{-6} +a z-2 z a^{-1} -6 z a^{-3} -3 z a^{-5} - a^{-2} + a^{-1} z^{-1} + a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012345χ
12         2-2
10        4 4
8       52 -3
6      84  4
4     76   -1
2    77    0
0   58     3
-2  36      -3
-4 15       4
-6 3        -3
-81         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n172.gif

L11n172

L11n174.gif

L11n174