L11n174

From Knot Atlas
Jump to: navigation, search

L11n173.gif

L11n173

L11n175.gif

L11n175

Contents

L11n174.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n174 at Knotilus!


Link Presentations

[edit Notes on L11n174's Link Presentations]

Planar diagram presentation X8192 X20,9,21,10 X14,5,15,6 X11,18,12,19 X3,10,4,11 X7,13,8,12 X16,13,17,14 X17,7,18,22 X6,15,1,16 X4,21,5,22 X19,2,20,3
Gauss code {1, 11, -5, -10, 3, -9}, {-6, -1, 2, 5, -4, 6, 7, -3, 9, -7, -8, 4, -11, -2, 10, 8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n174 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{\left(t(2)^2-3 t(2)+1\right) \left(t(1)^2 t(2)^2+t(1) t(2)+1\right)}{t(1) t(2)^2} (db)
Jones polynomial -\frac{1}{\sqrt{q}}+\frac{2}{q^{3/2}}-\frac{4}{q^{5/2}}+\frac{4}{q^{7/2}}-\frac{5}{q^{9/2}}+\frac{5}{q^{11/2}}-\frac{4}{q^{13/2}}+\frac{3}{q^{15/2}}-\frac{2}{q^{17/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^9 z+a^9 z^{-1} -a^7 z^5-4 a^7 z^3-4 a^7 z-2 a^7 z^{-1} +a^5 z^7+5 a^5 z^5+7 a^5 z^3+4 a^5 z+2 a^5 z^{-1} -a^3 z^5-4 a^3 z^3-4 a^3 z-a^3 z^{-1} (db)
Kauffman polynomial 2 a^{11} z+a^{10} z^4+a^9 z^7-3 a^9 z^5+4 a^9 z^3-3 a^9 z+a^9 z^{-1} +2 a^8 z^8-8 a^8 z^6+10 a^8 z^4-6 a^8 z^2+a^7 z^9-a^7 z^7-9 a^7 z^5+15 a^7 z^3-9 a^7 z+2 a^7 z^{-1} +4 a^6 z^8-17 a^6 z^6+19 a^6 z^4-8 a^6 z^2+a^6+a^5 z^9-a^5 z^7-11 a^5 z^5+19 a^5 z^3-9 a^5 z+2 a^5 z^{-1} +2 a^4 z^8-9 a^4 z^6+10 a^4 z^4-2 a^4 z^2+a^3 z^7-5 a^3 z^5+8 a^3 z^3-5 a^3 z+a^3 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
0        11
-2       1 -1
-4      31 2
-6     22  0
-8    32   1
-10   22    0
-12  23     -1
-14 12      1
-1612       -1
-182        2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-6 {\mathbb Z}^{2} {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n173.gif

L11n173

L11n175.gif

L11n175