L11n180

From Knot Atlas
Jump to: navigation, search

L11n179.gif

L11n179

L11n181.gif

L11n181

Contents

L11n180.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n180 at Knotilus!


Link Presentations

[edit Notes on L11n180's Link Presentations]

Planar diagram presentation X8192 X3,10,4,11 X5,14,6,15 X16,8,17,7 X22,18,7,17 X15,13,16,12 X9,20,10,21 X11,19,12,18 X13,6,14,1 X19,4,20,5 X2,21,3,22
Gauss code {1, -11, -2, 10, -3, 9}, {4, -1, -7, 2, -8, 6, -9, 3, -6, -4, 5, 8, -10, 7, 11, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n180 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u^2 v^2-u^2 v-u^2-u v^2+u v-u-v^2-v+1}{u v} (db)
Jones polynomial -\frac{1}{q^{7/2}}-q^{5/2}+\frac{1}{q^{5/2}}+2 q^{3/2}-\frac{2}{q^{3/2}}-\frac{1}{q^{13/2}}-2 \sqrt{q}+\frac{2}{\sqrt{q}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^7 z^{-1} -a^5 z-a^5 z^{-1} -a^3 z^3-3 a^3 z+a z^5+4 a z^3-z^3 a^{-1} +3 a z-2 z a^{-1} (db)
Kauffman polynomial a^7 z^5-5 a^7 z^3+5 a^7 z-a^7 z^{-1} -2 a^6 z^2+a^6-3 a^5 z^3+3 a^5 z-a^5 z^{-1} +a^4 z^8-6 a^4 z^6+8 a^4 z^4-3 a^4 z^2+a^3 z^9-5 a^3 z^7+4 a^3 z^5+2 a^3 z^3-2 a^3 z+3 a^2 z^8-17 a^2 z^6+24 a^2 z^4-8 a^2 z^2+a z^9-4 a z^7+z^7 a^{-1} -5 z^5 a^{-1} +6 a z^3+6 z^3 a^{-1} -2 a z-2 z a^{-1} +2 z^8-11 z^6+16 z^4-7 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-101234χ
6          11
4         1 -1
2        11 0
0      121  0
-2     121   0
-4     12    1
-6   121     0
-8    1      1
-10  11       0
-121          1
-141          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2 i=0
r=-6 {\mathbb Z} {\mathbb Z}
r=-5
r=-4 {\mathbb Z}
r=-3 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n179.gif

L11n179

L11n181.gif

L11n181