L11n185

From Knot Atlas
Jump to: navigation, search

L11n184.gif

L11n184

L11n186.gif

L11n186

Contents

L11n185.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n185 at Knotilus!


Link Presentations

[edit Notes on L11n185's Link Presentations]

Planar diagram presentation X8192 X9,21,10,20 X21,1,22,6 X18,8,19,7 X3,10,4,11 X15,12,16,13 X5,14,6,15 X13,4,14,5 X11,16,12,17 X22,18,7,17 X2,20,3,19
Gauss code {1, -11, -5, 8, -7, 3}, {4, -1, -2, 5, -9, 6, -8, 7, -6, 9, 10, -4, 11, 2, -3, -10}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n185 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 t(2)^2 t(1)^2-3 t(2) t(1)^2+t(1)^2-2 t(2)^2 t(1)+5 t(2) t(1)-2 t(1)+t(2)^2-3 t(2)+2}{t(1) t(2)} (db)
Jones polynomial q^{9/2}-2 q^{7/2}+4 q^{5/2}-6 q^{3/2}+6 \sqrt{q}-\frac{8}{\sqrt{q}}+\frac{6}{q^{3/2}}-\frac{5}{q^{5/2}}+\frac{3}{q^{7/2}}-\frac{1}{q^{9/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^3 z^3+z^3 a^{-3} +a^3 z+2 z a^{-3} + a^{-3} z^{-1} -a z^5-z^5 a^{-1} -2 a z^3-3 z^3 a^{-1} -4 z a^{-1} +2 a z^{-1} -3 a^{-1} z^{-1} (db)
Kauffman polynomial a^5 z^3-a^5 z+z^6 a^{-4} +3 a^4 z^4-4 z^4 a^{-4} -3 a^4 z^2+4 z^2 a^{-4} - a^{-4} +a^3 z^7+2 z^7 a^{-3} -a^3 z^5-7 z^5 a^{-3} +3 a^3 z^3+6 z^3 a^{-3} -a^3 z-3 z a^{-3} + a^{-3} z^{-1} +2 a^2 z^8+2 z^8 a^{-2} -7 a^2 z^6-5 z^6 a^{-2} +13 a^2 z^4-z^4 a^{-2} -6 a^2 z^2+5 z^2 a^{-2} -3 a^{-2} +a z^9+z^9 a^{-1} -a z^7-2 a z^5-8 z^5 a^{-1} +6 a z^3+10 z^3 a^{-1} -4 a z-7 z a^{-1} +2 a z^{-1} +3 a^{-1} z^{-1} +4 z^8-13 z^6+13 z^4-2 z^2-3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012345χ
10         1-1
8        1 1
6       31 -2
4      31  2
2     33   0
0    53    2
-2   24     2
-4  34      -1
-6 13       2
-8 2        -2
-101         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n184.gif

L11n184

L11n186.gif

L11n186