L11n198

From Knot Atlas
Jump to: navigation, search

L11n197.gif

L11n197

L11n199.gif

L11n199

Contents

L11n198.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n198 at Knotilus!


Link Presentations

[edit Notes on L11n198's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,3,13,4 X5,14,6,15 X7,17,8,16 X15,21,16,20 X18,14,19,13 X21,6,22,7 X22,18,9,17 X19,5,20,4 X2,9,3,10 X8,11,1,12
Gauss code {1, -10, 2, 9, -3, 7, -4, -11}, {10, -1, 11, -2, 6, 3, -5, 4, 8, -6, -9, 5, -7, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L11n198 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(2)^2 t(1)^3-t(2) t(1)^3+t(2)^3 t(1)^2-2 t(2)^2 t(1)^2+2 t(2) t(1)^2+2 t(2)^2 t(1)-2 t(2) t(1)+t(1)-t(2)^2+t(2)}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial q^{9/2}-2 q^{7/2}+3 q^{5/2}-4 q^{3/2}+4 \sqrt{q}-\frac{5}{\sqrt{q}}+\frac{4}{q^{3/2}}-\frac{3}{q^{5/2}}+\frac{1}{q^{7/2}}-\frac{1}{q^{9/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^3 z^3+z^3 a^{-3} +3 a^3 z+2 z a^{-3} +2 a^3 z^{-1} -a z^5-z^5 a^{-1} -4 a z^3-3 z^3 a^{-1} -6 a z-z a^{-1} -3 a z^{-1} + a^{-1} z^{-1} (db)
Kauffman polynomial -a z^9-z^9 a^{-1} -a^2 z^8-2 z^8 a^{-2} -3 z^8+5 a z^7+3 z^7 a^{-1} -2 z^7 a^{-3} +5 a^2 z^6+8 z^6 a^{-2} -z^6 a^{-4} +14 z^6-2 a^3 z^5-11 a z^5-z^5 a^{-1} +8 z^5 a^{-3} -a^4 z^4-11 a^2 z^4-8 z^4 a^{-2} +4 z^4 a^{-4} -22 z^4-a^5 z^3+5 a^3 z^3+13 a z^3-7 z^3 a^{-3} +a^4 z^2+8 a^2 z^2+4 z^2 a^{-2} -3 z^2 a^{-4} +14 z^2+2 a^5 z-6 a^3 z-11 a z-z a^{-1} +2 z a^{-3} -3 a^2- a^{-2} -3+2 a^3 z^{-1} +3 a z^{-1} + a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012345χ
10         1-1
8        1 1
6       21 -1
4      21  1
2     22   0
0    32    1
-2   23     1
-4  12      -1
-6  2       2
-811        0
-101         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n197.gif

L11n197

L11n199.gif

L11n199