L11n200

From Knot Atlas
Jump to: navigation, search

L11n199.gif

L11n199

L11n201.gif

L11n201

Contents

L11n200.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n200 at Knotilus!


Link Presentations

[edit Notes on L11n200's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,3,13,4 X5,14,6,15 X16,7,17,8 X20,15,21,16 X13,18,14,19 X6,22,7,21 X22,18,9,17 X19,5,20,4 X2,9,3,10 X8,11,1,12
Gauss code {1, -10, 2, 9, -3, -7, 4, -11}, {10, -1, 11, -2, -6, 3, 5, -4, 8, 6, -9, -5, 7, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L11n200 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)+t(2)) (t(2) t(1)-t(1)+1) (t(1) t(2)-t(2)+1)}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial -\frac{6}{q^{9/2}}+\frac{5}{q^{7/2}}-\frac{6}{q^{5/2}}+\frac{4}{q^{3/2}}-\frac{1}{q^{17/2}}+\frac{2}{q^{15/2}}-\frac{3}{q^{13/2}}+\frac{5}{q^{11/2}}+\sqrt{q}-\frac{3}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial z^3 a^7+2 z a^7-z^5 a^5-3 z^3 a^5-2 z a^5+a^5 z^{-1} -z^5 a^3-3 z^3 a^3-3 z a^3-a^3 z^{-1} +z^3 a+z a (db)
Kauffman polynomial -z^7 a^9+5 z^5 a^9-7 z^3 a^9+2 z a^9-2 z^8 a^8+10 z^6 a^8-15 z^4 a^8+7 z^2 a^8-z^9 a^7+2 z^7 a^7+4 z^5 a^7-6 z^3 a^7-4 z^8 a^6+16 z^6 a^6-18 z^4 a^6+8 z^2 a^6-z^9 a^5+z^7 a^5+3 z^5 a^5+z^3 a^5-z a^5-a^5 z^{-1} -2 z^8 a^4+5 z^6 a^4-3 z^4 a^4+z^2 a^4+a^4-2 z^7 a^3+4 z^5 a^3-3 z^3 a^3+2 z a^3-a^3 z^{-1} -z^6 a^2-z^2 a^2-3 z^3 a+z a-z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-101χ
2         1-1
0        2 2
-2       32 -1
-4      31  2
-6     23   1
-8    43    1
-10   23     1
-12  13      -2
-14 12       1
-16 1        -1
-181         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n199.gif

L11n199

L11n201.gif

L11n201