L11n206

From Knot Atlas
Jump to: navigation, search

L11n205.gif

L11n205

L11n207.gif

L11n207

Contents

L11n206.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n206 at Knotilus!


Link Presentations

[edit Notes on L11n206's Link Presentations]

Planar diagram presentation X10,1,11,2 X16,8,17,7 X18,12,19,11 X19,3,20,2 X3,12,4,13 X13,21,14,20 X14,5,15,6 X6,9,7,10 X22,16,9,15 X8,18,1,17 X4,22,5,21
Gauss code {1, 4, -5, -11, 7, -8, 2, -10}, {8, -1, 3, 5, -6, -7, 9, -2, 10, -3, -4, 6, 11, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11n206 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) (t(1) t(2)+1)^2}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial -4 q^{9/2}+5 q^{7/2}-6 q^{5/2}+4 q^{3/2}-\frac{1}{q^{3/2}}+q^{15/2}-2 q^{13/2}+3 q^{11/2}-4 \sqrt{q}+\frac{2}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z^5 a^{-5} +4 z^3 a^{-5} +4 z a^{-5} + a^{-5} z^{-1} -z^7 a^{-3} -6 z^5 a^{-3} -12 z^3 a^{-3} -9 z a^{-3} -3 a^{-3} z^{-1} +z^5 a^{-1} +4 z^3 a^{-1} +5 z a^{-1} +2 a^{-1} z^{-1} (db)
Kauffman polynomial z^6 a^{-8} -4 z^4 a^{-8} +3 z^2 a^{-8} +2 z^7 a^{-7} -8 z^5 a^{-7} +7 z^3 a^{-7} -z a^{-7} +2 z^8 a^{-6} -8 z^6 a^{-6} +9 z^4 a^{-6} -5 z^2 a^{-6} + a^{-6} +z^9 a^{-5} -3 z^7 a^{-5} +3 z^5 a^{-5} -5 z^3 a^{-5} +4 z a^{-5} - a^{-5} z^{-1} +3 z^8 a^{-4} -13 z^6 a^{-4} +21 z^4 a^{-4} -14 z^2 a^{-4} +3 a^{-4} +z^9 a^{-3} -5 z^7 a^{-3} +14 z^5 a^{-3} -18 z^3 a^{-3} +11 z a^{-3} -3 a^{-3} z^{-1} +z^8 a^{-2} -4 z^6 a^{-2} +10 z^4 a^{-2} -8 z^2 a^{-2} +3 a^{-2} +3 z^5 a^{-1} +a z^3-5 z^3 a^{-1} -a z+5 z a^{-1} -2 a^{-1} z^{-1} +2 z^4-2 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-101234567χ
16         1-1
14        1 1
12       21 -1
10      21  1
8     32   -1
6    32    1
4   13     2
2  33      0
0 13       2
-2 1        -1
-41         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n205.gif

L11n205

L11n207.gif

L11n207