# L11n211

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11n211 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $-\frac{u^3 v^2+u^2 v^5-2 u^2 v^4+3 u^2 v^3-3 u^2 v^2+2 u^2 v+2 u v^4-3 u v^3+3 u v^2-2 u v+u+v^3}{u^{3/2} v^{5/2}}$ (db) Jones polynomial $\frac{8}{q^{9/2}}-\frac{8}{q^{7/2}}+\frac{5}{q^{5/2}}-\frac{3}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{2}{q^{17/2}}-\frac{5}{q^{15/2}}+\frac{7}{q^{13/2}}-\frac{8}{q^{11/2}}+\frac{1}{\sqrt{q}}$ (db) Signature -3 (db) HOMFLY-PT polynomial $z^5 a^7+4 z^3 a^7+6 z a^7+2 a^7 z^{-1} -z^7 a^5-6 z^5 a^5-14 z^3 a^5-13 z a^5-3 a^5 z^{-1} +z^5 a^3+3 z^3 a^3+3 z a^3+a^3 z^{-1}$ (db) Kauffman polynomial $-z^5 a^{11}+3 z^3 a^{11}-2 z a^{11}-2 z^6 a^{10}+4 z^4 a^{10}-z^2 a^{10}-3 z^7 a^9+7 z^5 a^9-6 z^3 a^9+3 z a^9-2 z^8 a^8+2 z^6 a^8+z^2 a^8-z^9 a^7+z^7 a^7-6 z^5 a^7+11 z^3 a^7-8 z a^7+2 a^7 z^{-1} -3 z^8 a^6+7 z^6 a^6-14 z^4 a^6+12 z^2 a^6-3 a^6-z^9 a^5+4 z^7 a^5-17 z^5 a^5+25 z^3 a^5-16 z a^5+3 a^5 z^{-1} -z^8 a^4+3 z^6 a^4-11 z^4 a^4+12 z^2 a^4-3 a^4-3 z^5 a^3+5 z^3 a^3-3 z a^3+a^3 z^{-1} -z^4 a^2+2 z^2 a^2-a^2$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-8-7-6-5-4-3-2-101χ
0         1-1
-2        2 2
-4       42 -2
-6      41  3
-8     44   0
-10    44    0
-12   34     1
-14  24      -2
-16  3       3
-1812        -1
-201         1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-4$ $i=-2$ $r=-8$ ${\mathbb Z}$ ${\mathbb Z}$ $r=-7$ ${\mathbb Z}^{2}$ $r=-6$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=-5$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=-4$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=-3$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=-2$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=-1$ ${\mathbb Z}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=0$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2$ ${\mathbb Z}^{2}$ $r=1$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.