L11n215

From Knot Atlas
Jump to: navigation, search

L11n214.gif

L11n214

L11n216.gif

L11n216

Contents

L11n215.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n215 at Knotilus!


Link Presentations

[edit Notes on L11n215's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,3,13,4 X14,5,15,6 X9,18,10,19 X17,22,18,9 X21,1,22,8 X20,15,21,16 X7,16,8,17 X6,20,7,19 X4,11,5,12 X2,13,3,14
Gauss code {1, -11, 2, -10, 3, -9, -8, 6}, {-4, -1, 10, -2, 11, -3, 7, 8, -5, 4, 9, -7, -6, 5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n215 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(2)^2 t(1)^3-t(2) t(1)^3+t(2)^3 t(1)^2-4 t(2)^2 t(1)^2+4 t(2) t(1)^2-2 t(1)^2-2 t(2)^3 t(1)+4 t(2)^2 t(1)-4 t(2) t(1)+t(1)-t(2)^2+t(2)}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial -\frac{2}{q^{3/2}}+\frac{4}{q^{5/2}}-\frac{7}{q^{7/2}}+\frac{8}{q^{9/2}}-\frac{9}{q^{11/2}}+\frac{8}{q^{13/2}}-\frac{7}{q^{15/2}}+\frac{4}{q^{17/2}}-\frac{2}{q^{19/2}}+\frac{1}{q^{21/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -z^3 a^9-2 z a^9-a^9 z^{-1} +z^5 a^7+3 z^3 a^7+5 z a^7+3 a^7 z^{-1} +z^5 a^5+z^3 a^5-2 z a^5-2 a^5 z^{-1} -2 z^3 a^3-3 z a^3 (db)
Kauffman polynomial -z^6 a^{12}+4 z^4 a^{12}-4 z^2 a^{12}-2 z^7 a^{11}+7 z^5 a^{11}-7 z^3 a^{11}+2 z a^{11}-2 z^8 a^{10}+5 z^6 a^{10}-3 z^4 a^{10}+2 z^2 a^{10}-a^{10}-z^9 a^9+2 z^5 a^9+3 z^3 a^9-2 z a^9+a^9 z^{-1} -4 z^8 a^8+9 z^6 a^8-10 z^4 a^8+11 z^2 a^8-3 a^8-z^9 a^7-5 z^5 a^7+15 z^3 a^7-12 z a^7+3 a^7 z^{-1} -2 z^8 a^6+2 z^6 a^6-5 z^4 a^6+6 z^2 a^6-3 a^6-2 z^7 a^5+2 z^3 a^5-5 z a^5+2 a^5 z^{-1} -z^6 a^4-2 z^4 a^4+z^2 a^4-3 z^3 a^3+3 z a^3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-2         22
-4        31-2
-6       41 3
-8      43  -1
-10     54   1
-12    45    1
-14   34     -1
-16  14      3
-18 13       -2
-20 1        1
-221         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n214.gif

L11n214

L11n216.gif

L11n216