L11n217

From Knot Atlas
Jump to: navigation, search

L11n216.gif

L11n216

L11n218.gif

L11n218

Contents

L11n217.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n217 at Knotilus!


Link Presentations

[edit Notes on L11n217's Link Presentations]

Planar diagram presentation X10,1,11,2 X8,9,1,10 X3,12,4,13 X15,22,16,9 X17,3,18,2 X21,4,22,5 X5,15,6,14 X13,21,14,20 X11,16,12,17 X19,7,20,6 X7,19,8,18
Gauss code {1, 5, -3, 6, -7, 10, -11, -2}, {2, -1, -9, 3, -8, 7, -4, 9, -5, 11, -10, 8, -6, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n217 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) \left(t(2) t(1)^2+2 t(2)^2 t(1)-3 t(2) t(1)+2 t(1)+t(2)\right)}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial 2 q^{5/2}-6 q^{3/2}+8 \sqrt{q}-\frac{12}{\sqrt{q}}+\frac{12}{q^{3/2}}-\frac{12}{q^{5/2}}+\frac{10}{q^{7/2}}-\frac{6}{q^{9/2}}+\frac{3}{q^{11/2}}-\frac{1}{q^{13/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial z^3 a^5+z a^5-z^5 a^3-z^3 a^3-2 z^5 a-5 z^3 a-3 z a+a z^{-1} +2 z^3 a^{-1} +2 z a^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial a^7 z^5-2 a^7 z^3+3 a^6 z^6-6 a^6 z^4+2 a^6 z^2+5 a^5 z^7-11 a^5 z^5+8 a^5 z^3-2 a^5 z+5 a^4 z^8-11 a^4 z^6+11 a^4 z^4-4 a^4 z^2+2 a^3 z^9+2 a^3 z^7-8 a^3 z^5+6 a^3 z^3+8 a^2 z^8-19 a^2 z^6+23 a^2 z^4+3 z^4 a^{-2} -11 a^2 z^2-3 z^2 a^{-2} +2 a z^9-2 a z^7+z^7 a^{-1} +9 a z^5+5 z^5 a^{-1} -15 a z^3-11 z^3 a^{-1} +6 a z+4 z a^{-1} +a z^{-1} + a^{-1} z^{-1} +3 z^8-5 z^6+9 z^4-8 z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-10123χ
6         2-2
4        4 4
2       42 -2
0      84  4
-2     66   0
-4    66    0
-6   46     2
-8  26      -4
-10 14       3
-12 2        -2
-141         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n216.gif

L11n216

L11n218.gif

L11n218