L11n219

From Knot Atlas
Jump to: navigation, search

L11n218.gif

L11n218

L11n220.gif

L11n220

Contents

L11n219.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n219 at Knotilus!


Link Presentations

[edit Notes on L11n219's Link Presentations]

Planar diagram presentation X10,1,11,2 X8,9,1,10 X3,12,4,13 X22,16,9,15 X17,3,18,2 X4,22,5,21 X14,5,15,6 X13,21,14,20 X16,12,17,11 X19,7,20,6 X7,19,8,18
Gauss code {1, 5, -3, -6, 7, 10, -11, -2}, {2, -1, 9, 3, -8, -7, 4, -9, -5, 11, -10, 8, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n219 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) \left(t(1)^2+t(1)+1\right) (t(2)-1)}{t(1)^{3/2} \sqrt{t(2)}} (db)
Jones polynomial q^{13/2}-q^{11/2}+q^{9/2}-2 q^{7/2}+q^{5/2}-q^{3/2}-\frac{1}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial z^3 a^{-5} +3 z a^{-5} + a^{-5} z^{-1} -z^5 a^{-3} -5 z^3 a^{-3} -7 z a^{-3} -3 a^{-3} z^{-1} +z^3 a^{-1} +4 z a^{-1} +2 a^{-1} z^{-1} (db)
Kauffman polynomial z^8 a^{-6} -7 z^6 a^{-6} +15 z^4 a^{-6} -10 z^2 a^{-6} + a^{-6} +z^9 a^{-5} -7 z^7 a^{-5} +16 z^5 a^{-5} -15 z^3 a^{-5} +6 z a^{-5} - a^{-5} z^{-1} +2 z^8 a^{-4} -13 z^6 a^{-4} +25 z^4 a^{-4} -16 z^2 a^{-4} +3 a^{-4} +z^9 a^{-3} -7 z^7 a^{-3} +17 z^5 a^{-3} -21 z^3 a^{-3} +13 z a^{-3} -3 a^{-3} z^{-1} +z^8 a^{-2} -6 z^6 a^{-2} +10 z^4 a^{-2} -7 z^2 a^{-2} +3 a^{-2} +z^5 a^{-1} -6 z^3 a^{-1} +7 z a^{-1} -2 a^{-1} z^{-1} -z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
01234567χ
14       1-1
12        0
10     11 0
8    1   1
6    1   1
4  11    0
21       1
021      1
-21       1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0 i=2
r=0 {\mathbb Z} {\mathbb Z}^{2} {\mathbb Z}
r=1 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}
r=6 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n218.gif

L11n218

L11n220.gif

L11n220