L11n222

From Knot Atlas
Jump to: navigation, search

L11n221.gif

L11n221

L11n223.gif

L11n223

Contents

L11n222.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n222 at Knotilus!


Link Presentations

[edit Notes on L11n222's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X13,20,14,21 X5,14,6,15 X4,21,5,22 X16,9,17,10 X22,15,9,16 X17,6,18,7 X7,18,8,19 X19,8,20,1
Gauss code {1, -2, 3, -6, -5, 9, -10, 11}, {7, -1, 2, -3, -4, 5, 8, -7, -9, 10, -11, 4, 6, -8}
A Braid Representative
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif
A Morse Link Presentation L11n222 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u v+1) \left(u^2 v^4-u v^3+2 u v^2-u v+1\right)}{u^{3/2} v^{5/2}} (db)
Jones polynomial -\frac{1}{q^{9/2}}-\frac{1}{q^{27/2}}+\frac{2}{q^{25/2}}-\frac{2}{q^{23/2}}+\frac{2}{q^{21/2}}-\frac{2}{q^{19/2}}+\frac{1}{q^{17/2}}-\frac{1}{q^{13/2}} (db)
Signature -7 (db)
HOMFLY-PT polynomial a^{13} \left(-z^3\right)-2 a^{13} z-a^{13} z^{-1} +a^{11} z^7+8 a^{11} z^5+19 a^{11} z^3+15 a^{11} z+3 a^{11} z^{-1} -a^9 z^9-9 a^9 z^7-28 a^9 z^5-36 a^9 z^3-17 a^9 z-2 a^9 z^{-1} (db)
Kauffman polynomial -z^3 a^{17}+z a^{17}-2 z^4 a^{16}+3 z^2 a^{16}-z^5 a^{15}+z a^{15}-2 z^4 a^{14}+2 z^2 a^{14}-a^{14}-z^3 a^{13}-z a^{13}+a^{13} z^{-1} -z^8 a^{12}+8 z^6 a^{12}-19 z^4 a^{12}+14 z^2 a^{12}-3 a^{12}-z^9 a^{11}+9 z^7 a^{11}-27 z^5 a^{11}+34 z^3 a^{11}-18 z a^{11}+3 a^{11} z^{-1} -z^8 a^{10}+8 z^6 a^{10}-19 z^4 a^{10}+15 z^2 a^{10}-3 a^{10}-z^9 a^9+9 z^7 a^9-28 z^5 a^9+36 z^3 a^9-17 z a^9+2 a^9 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-8          11
-10          11
-12        1  1
-14      1    1
-16     111   -1
-18    21     1
-20    11     0
-22  22       0
-24 11        0
-26 1         -1
-281          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-10 i=-8 i=-6
r=-10 {\mathbb Z}
r=-9 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-7 {\mathbb Z}^{2}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}_2 {\mathbb Z}
r=-1
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n221.gif

L11n221

L11n223.gif

L11n223