L11n224

From Knot Atlas
Jump to: navigation, search

L11n223.gif

L11n223

L11n225.gif

L11n225

Contents

L11n224.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n224 at Knotilus!


Link Presentations

[edit Notes on L11n224's Link Presentations]

Planar diagram presentation X10,1,11,2 X3,12,4,13 X16,9,17,10 X20,12,21,11 X22,15,9,16 X5,14,6,15 X7,18,8,19 X13,4,14,5 X17,6,18,7 X19,8,20,1 X2,21,3,22
Gauss code {1, -11, -2, 8, -6, 9, -7, 10}, {3, -1, 4, 2, -8, 6, 5, -3, -9, 7, -10, -4, 11, -5}
A Braid Representative
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11n224 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1)^3 t(2)^3+t(1)^2 t(2)^3-t(1) t(2)^3-t(1)^2 t(2)^2+2 t(1) t(2)^2+2 t(1)^2 t(2)-t(1) t(2)-t(1)^2+t(1)+1}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial -\frac{1}{q^{7/2}}-\frac{2}{q^{13/2}}+\frac{3}{q^{15/2}}-\frac{3}{q^{17/2}}+\frac{3}{q^{19/2}}-\frac{3}{q^{21/2}}+\frac{2}{q^{23/2}}-\frac{1}{q^{25/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial z^3 a^{11}+z a^{11}+2 z^3 a^9+4 z a^9+a^9 z^{-1} -z^7 a^7-7 z^5 a^7-14 z^3 a^7-9 z a^7-a^7 z^{-1} (db)
Kauffman polynomial a^{15} z^5-3 a^{15} z^3+2 a^{15} z+2 a^{14} z^6-6 a^{14} z^4+3 a^{14} z^2+a^{13} z^7-a^{13} z^5-3 a^{13} z^3+a^{13} z+2 a^{12} z^6-3 a^{12} z^4-a^{12} z^2+3 a^{11} z^5-6 a^{11} z^3+3 a^{11} z+a^{10} z^4+a^{10} z^2-2 a^9 z^5+8 a^9 z^3-5 a^9 z+a^9 z^{-1} -2 a^8 z^4+5 a^8 z^2-a^8+a^7 z^7-7 a^7 z^5+14 a^7 z^3-9 a^7 z+a^7 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-6          11
-8          11
-10       11  0
-12      2    2
-14     221   -1
-16    22     0
-18   121     0
-20  22       0
-22 12        1
-24 1         -1
-261          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-8 i=-6 i=-4
r=-10 {\mathbb Z}
r=-9 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-8 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-3 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}_2 {\mathbb Z}
r=-1
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n223.gif

L11n223

L11n225.gif

L11n225