L11n240

From Knot Atlas
Jump to: navigation, search

L11n239.gif

L11n239

L11n241.gif

L11n241

Contents

L11n240.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n240 at Knotilus!


Link Presentations

[edit Notes on L11n240's Link Presentations]

Planar diagram presentation X12,1,13,2 X16,8,17,7 X5,1,6,10 X3746 X9,5,10,4 X13,18,14,19 X19,22,20,11 X15,21,16,20 X21,15,22,14 X2,11,3,12 X8,18,9,17
Gauss code {1, -10, -4, 5, -3, 4, 2, -11, -5, 3}, {10, -1, -6, 9, -8, -2, 11, 6, -7, 8, -9, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11n240 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) \left(t(2) t(1)^2-t(2)^2 t(1)+2 t(2) t(1)-t(1)+t(2)\right)}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial q^{15/2}-2 q^{13/2}+3 q^{11/2}-4 q^{9/2}+3 q^{7/2}-3 q^{5/2}+2 q^{3/2}-\sqrt{q}-\frac{1}{\sqrt{q}}+\frac{1}{q^{3/2}}-\frac{1}{q^{5/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z a^{-7} + a^{-7} z^{-1} -2 z^3 a^{-5} -5 z a^{-5} -4 a^{-5} z^{-1} +z^5 a^{-3} +5 z^3 a^{-3} +10 z a^{-3} +6 a^{-3} z^{-1} -z^5 a^{-1} +a z^3-6 z^3 a^{-1} +3 a z-9 z a^{-1} +2 a z^{-1} -5 a^{-1} z^{-1} (db)
Kauffman polynomial z^6 a^{-8} -4 z^4 a^{-8} +4 z^2 a^{-8} - a^{-8} +2 z^7 a^{-7} -8 z^5 a^{-7} +8 z^3 a^{-7} -4 z a^{-7} + a^{-7} z^{-1} +z^8 a^{-6} -z^6 a^{-6} -8 z^4 a^{-6} +9 z^2 a^{-6} -3 a^{-6} +4 z^7 a^{-5} -18 z^5 a^{-5} +24 z^3 a^{-5} -16 z a^{-5} +4 a^{-5} z^{-1} +z^8 a^{-4} -3 z^6 a^{-4} -2 z^4 a^{-4} +7 z^2 a^{-4} -3 a^{-4} +3 z^7 a^{-3} -20 z^5 a^{-3} +39 z^3 a^{-3} -27 z a^{-3} +6 a^{-3} z^{-1} +z^8 a^{-2} -7 z^6 a^{-2} +10 z^4 a^{-2} - a^{-2} +a z^7+2 z^7 a^{-1} -6 a z^5-16 z^5 a^{-1} +10 a z^3+33 z^3 a^{-1} -7 a z-22 z a^{-1} +2 a z^{-1} +5 a^{-1} z^{-1} +z^8-6 z^6+8 z^4-2 z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
16           1-1
14          1 1
12         21 -1
10        21  1
8      122   1
6      22    0
4    122     1
2   122      -1
0   13       2
-2 11         0
-4            0
-61           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2 i=4
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{3} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n239.gif

L11n239

L11n241.gif

L11n241