L11n266

From Knot Atlas
Jump to: navigation, search

L11n265.gif

L11n265

L11n267.gif

L11n267

Contents

L11n266.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n266 at Knotilus!


Link Presentations

[edit Notes on L11n266's Link Presentations]

Planar diagram presentation X6172 X3,11,4,10 X7,15,8,14 X13,5,14,8 X18,11,19,12 X20,15,21,16 X22,17,9,18 X16,21,17,22 X12,19,13,20 X2536 X9,1,10,4
Gauss code {1, -10, -2, 11}, {10, -1, -3, 4}, {-11, 2, 5, -9, -4, 3, 6, -8, 7, -5, 9, -6, 8, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n266 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-u v w^3+u v w^2-u v-u w^4+2 u w^3-2 u w^2+u w-v w^4+2 v w^3-2 v w^2+v w+w^5-w^3+w^2}{\sqrt{u} \sqrt{v} w^{5/2}} (db)
Jones polynomial - q^{-8} +2 q^{-7} -5 q^{-6} +5 q^{-5} -5 q^{-4} +6 q^{-3} +q^2-3 q^{-2} +3 q^{-1} +1 (db)
Signature -2 (db)
HOMFLY-PT polynomial -z^4 a^6-3 z^2 a^6-2 a^6 z^{-2} -5 a^6+z^6 a^4+6 z^4 a^4+16 z^2 a^4+7 a^4 z^{-2} +18 a^4-z^6 a^2-8 z^4 a^2-19 z^2 a^2-8 a^2 z^{-2} -20 a^2+z^4+5 z^2+3 z^{-2} +7 (db)
Kauffman polynomial z^5 a^9-3 z^3 a^9+3 z a^9-a^9 z^{-1} +2 z^6 a^8-4 z^4 a^8+a^8+2 z^7 a^7-2 z^5 a^7-5 z^3 a^7+3 z a^7-a^7 z^{-1} +z^8 a^6-z^4 a^6-6 z^2 a^6-2 a^6 z^{-2} +7 a^6+3 z^7 a^5-9 z^5 a^5+19 z^3 a^5-21 z a^5+7 a^5 z^{-1} +z^8 a^4-5 z^6 a^4+18 z^4 a^4-27 z^2 a^4-7 a^4 z^{-2} +22 a^4+2 z^7 a^3-16 z^5 a^3+47 z^3 a^3-45 z a^3+15 a^3 z^{-1} +z^8 a^2-11 z^6 a^2+36 z^4 a^2-45 z^2 a^2-8 a^2 z^{-2} +28 a^2+z^7 a-10 z^5 a+26 z^3 a-24 z a+8 a z^{-1} +z^8-8 z^6+21 z^4-24 z^2-3 z^{-2} +13 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
5           11
3           11
1         1  1
-1       4    4
-3      341   0
-5     41     3
-7    131     1
-9   44       0
-11  11        0
-13 14         -3
-15 1          1
-171           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3 i=-1
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{4} {\mathbb Z}^{4}
r=1 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}
r=3
r=4 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n265.gif

L11n265

L11n267.gif

L11n267