L11n270

From Knot Atlas
Jump to: navigation, search

L11n269.gif

L11n269

L11n271.gif

L11n271

Contents

L11n270.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n270 at Knotilus!


Link Presentations

[edit Notes on L11n270's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X16,7,17,8 X8,15,5,16 X11,19,12,18 X17,9,18,22 X13,21,14,20 X19,13,20,12 X21,15,22,14 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 3, -4}, {11, -2, -5, 8, -7, 9, 4, -3, -6, 5, -8, 7, -9, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n270 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1) t(3)^5+t(2) t(3)^5-t(3)^5-t(1) t(3)^4-t(2) t(3)^4+t(1) t(3)^3+t(2) t(3)^3-t(1) t(3)^2-t(2) t(3)^2+t(1) t(3)+t(2) t(3)-t(1)+t(1) t(2)-t(2)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{5/2}} (db)
Jones polynomial  q^{-5} -2 q^4- q^{-4} +2 q^3+4 q^{-3} -3 q^2-2 q^{-2} +4 q+5 q^{-1} -4 (db)
Signature 2 (db)
HOMFLY-PT polynomial 2 z^6-3 a^2 z^4-2 z^4 a^{-2} +12 z^4+a^4 z^2-14 a^2 z^2-8 z^2 a^{-2} +24 z^2+4 a^4-18 a^2-7 a^{-2} +21+3 a^4 z^{-2} -8 a^2 z^{-2} -2 a^{-2} z^{-2} +7 z^{-2} (db)
Kauffman polynomial a^3 z^9+a z^9+a^4 z^8+5 a^2 z^8+4 z^8-4 a^3 z^7+4 z^7 a^{-1} -7 a^4 z^6-30 a^2 z^6+2 z^6 a^{-2} -21 z^6-2 a^3 z^5-21 a z^5-17 z^5 a^{-1} +2 z^5 a^{-3} +18 a^4 z^4+59 a^2 z^4-2 z^4 a^{-2} +z^4 a^{-4} +38 z^4+22 a^3 z^3+50 a z^3+24 z^3 a^{-1} -4 z^3 a^{-3} -22 a^4 z^2-51 a^2 z^2-8 z^2 a^{-2} -37 z^2-24 a^3 z-45 a z-21 z a^{-1} +3 z a^{-3} +3 z a^{-5} +13 a^4+28 a^2+7 a^{-2} + a^{-4} +22+8 a^3 z^{-1} +15 a z^{-1} +7 a^{-1} z^{-1} - a^{-3} z^{-1} - a^{-5} z^{-1} -3 a^4 z^{-2} -8 a^2 z^{-2} -2 a^{-2} z^{-2} -7 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-10123χ
9         2-2
7        110
5       32 -1
3      111 1
1     44   0
-1    111   1
-3   14     3
-5  31      2
-7 14       3
-9          0
-111         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1 i=3
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4} {\mathbb Z}^{3}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z} {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n269.gif

L11n269

L11n271.gif

L11n271