L11n30

From Knot Atlas
Jump to: navigation, search

L11n29.gif

L11n29

L11n31.gif

L11n31

Contents

L11n30.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n30 at Knotilus!


Link Presentations

[edit Notes on L11n30's Link Presentations]

Planar diagram presentation X6172 X18,7,19,8 X19,1,20,4 X5,12,6,13 X3849 X9,16,10,17 X13,22,14,5 X15,10,16,11 X21,14,22,15 X11,20,12,21 X2,18,3,17
Gauss code {1, -11, -5, 3}, {-4, -1, 2, 5, -6, 8, -10, 4, -7, 9, -8, 6, 11, -2, -3, 10, -9, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11n30 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 (u-1) (v-1)}{\sqrt{u} \sqrt{v}} (db)
Jones polynomial -\frac{3}{q^{9/2}}+\frac{1}{q^{7/2}}-\frac{2}{q^{5/2}}+\frac{1}{q^{3/2}}+\frac{1}{q^{19/2}}-\frac{1}{q^{17/2}}+\frac{2}{q^{15/2}}-\frac{2}{q^{13/2}}+\frac{2}{q^{11/2}}-\frac{1}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -z a^9-a^9 z^{-1} +z^3 a^7+2 z a^7+a^7 z^{-1} +z^3 a^5+2 z a^5+2 a^5 z^{-1} -2 z a^3-2 a^3 z^{-1} -z a (db)
Kauffman polynomial a^{10} z^8-7 a^{10} z^6+16 a^{10} z^4-14 a^{10} z^2+4 a^{10}+a^9 z^9-6 a^9 z^7+10 a^9 z^5-4 a^9 z^3-a^9 z^{-1} +3 a^8 z^8-19 a^8 z^6+38 a^8 z^4-30 a^8 z^2+9 a^8+a^7 z^9-4 a^7 z^7+8 a^7 z^3-3 a^7 z-a^7 z^{-1} +2 a^6 z^8-11 a^6 z^6+18 a^6 z^4-13 a^6 z^2+4 a^6+2 a^5 z^7-10 a^5 z^5+14 a^5 z^3-9 a^5 z+2 a^5 z^{-1} +a^4 z^6-4 a^4 z^4+4 a^4 z^2-2 a^4+2 a^3 z^3-5 a^3 z+2 a^3 z^{-1} +a^2 z^2+a z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
0         11
-2        220
-4       1111
-6      23  1
-8     211  2
-10    131   1
-12   22     0
-14   11     0
-16 12       -1
-18          0
-201         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2 i=0
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{2}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}_2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}^{2} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n29.gif

L11n29

L11n31.gif

L11n31