L11n301

From Knot Atlas
Jump to: navigation, search

L11n300.gif

L11n300

L11n302.gif

L11n302

Contents

L11n301.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n301 at Knotilus!


Link Presentations

[edit Notes on L11n301's Link Presentations]

Planar diagram presentation X6172 X3,13,4,12 X13,21,14,20 X19,11,20,22 X15,5,16,10 X17,9,18,8 X7,17,8,16 X9,19,10,18 X21,15,22,14 X2536 X11,1,12,4
Gauss code {1, -10, -2, 11}, {10, -1, -7, 6, -8, 5}, {-11, 2, -3, 9, -5, 7, -6, 8, -4, 3, -9, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n301 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(2) t(3)^4-2 t(1) t(2)^2 t(3)^3+t(2)^2 t(3)^3+2 t(1) t(2) t(3)^3-3 t(2) t(3)^3+t(3)^3+2 t(1) t(2)^2 t(3)^2-t(2)^2 t(3)^2+t(1) t(3)^2-4 t(1) t(2) t(3)^2+4 t(2) t(3)^2-2 t(3)^2-t(1) t(2)^2 t(3)-t(1) t(3)+3 t(1) t(2) t(3)-2 t(2) t(3)+2 t(3)-t(1) t(2)}{\sqrt{t(1)} t(2) t(3)^2} (db)
Jones polynomial -q^{11}+3 q^{10}-6 q^9+9 q^8-11 q^7+12 q^6-10 q^5+9 q^4-4 q^3+3 q^2 (db)
Signature 4 (db)
HOMFLY-PT polynomial -z^2 a^{-10} - a^{-10} z^{-2} -2 a^{-10} +3 z^4 a^{-8} +10 z^2 a^{-8} +4 a^{-8} z^{-2} +11 a^{-8} -2 z^6 a^{-6} -10 z^4 a^{-6} -20 z^2 a^{-6} -5 a^{-6} z^{-2} -18 a^{-6} +3 z^4 a^{-4} +10 z^2 a^{-4} +2 a^{-4} z^{-2} +9 a^{-4} (db)
Kauffman polynomial z^5 a^{-13} -2 z^3 a^{-13} +z a^{-13} +3 z^6 a^{-12} -6 z^4 a^{-12} +3 z^2 a^{-12} - a^{-12} +4 z^7 a^{-11} -6 z^5 a^{-11} +z^3 a^{-11} -2 z a^{-11} + a^{-11} z^{-1} +3 z^8 a^{-10} -9 z^4 a^{-10} +6 z^2 a^{-10} - a^{-10} z^{-2} +z^9 a^{-9} +8 z^7 a^{-9} -26 z^5 a^{-9} +33 z^3 a^{-9} -19 z a^{-9} +5 a^{-9} z^{-1} +7 z^8 a^{-8} -17 z^6 a^{-8} +23 z^4 a^{-8} -19 z^2 a^{-8} -4 a^{-8} z^{-2} +13 a^{-8} +z^9 a^{-7} +7 z^7 a^{-7} -28 z^5 a^{-7} +48 z^3 a^{-7} -35 z a^{-7} +9 a^{-7} z^{-1} +4 z^8 a^{-6} -14 z^6 a^{-6} +32 z^4 a^{-6} -38 z^2 a^{-6} -5 a^{-6} z^{-2} +22 a^{-6} +3 z^7 a^{-5} -9 z^5 a^{-5} +18 z^3 a^{-5} -19 z a^{-5} +5 a^{-5} z^{-1} +6 z^4 a^{-4} -16 z^2 a^{-4} -2 a^{-4} z^{-2} +11 a^{-4} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
0123456789χ
23         1-1
21        2 2
19       41 -3
17      52  3
15     75   -2
13    54    1
11   57     2
9  45      -1
7 16       5
523        -1
33         3
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5
r=0 {\mathbb Z}^{3} {\mathbb Z}^{2}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=6 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=8 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=9 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n300.gif

L11n300

L11n302.gif

L11n302