L11n31

From Knot Atlas
Jump to: navigation, search

L11n30.gif

L11n30

L11n32.gif

L11n32

Contents

L11n31.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n31 at Knotilus!


Link Presentations

[edit Notes on L11n31's Link Presentations]

Planar diagram presentation X6172 X18,7,19,8 X4,19,1,20 X5,12,6,13 X8493 X9,16,10,17 X13,22,14,5 X15,10,16,11 X21,14,22,15 X11,20,12,21 X2,18,3,17
Gauss code {1, -11, 5, -3}, {-4, -1, 2, -5, -6, 8, -10, 4, -7, 9, -8, 6, 11, -2, 3, 10, -9, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11n31 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) \left(2 t(2)^2-3 t(2)+2\right)}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -\sqrt{q}+\frac{3}{\sqrt{q}}-\frac{6}{q^{3/2}}+\frac{7}{q^{5/2}}-\frac{10}{q^{7/2}}+\frac{9}{q^{9/2}}-\frac{9}{q^{11/2}}+\frac{6}{q^{13/2}}-\frac{3}{q^{15/2}}+\frac{2}{q^{17/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -a^9 z^{-1} -z^3 a^7+a^7 z^{-1} +z^5 a^5+2 z^3 a^5+3 z a^5+2 a^5 z^{-1} +z^5 a^3+z^3 a^3-2 z a^3-2 a^3 z^{-1} -z^3 a-z a (db)
Kauffman polynomial 3 a^{10} z^4-8 a^{10} z^2+4 a^{10}+a^9 z^7-a^9 z^5+a^9 z^3-2 a^9 z-a^9 z^{-1} +2 a^8 z^8-7 a^8 z^6+18 a^8 z^4-21 a^8 z^2+9 a^8+a^7 z^9+a^7 z^7-8 a^7 z^5+17 a^7 z^3-7 a^7 z-a^7 z^{-1} +5 a^6 z^8-14 a^6 z^6+20 a^6 z^4-11 a^6 z^2+4 a^6+a^5 z^9+4 a^5 z^7-16 a^5 z^5+22 a^5 z^3-11 a^5 z+2 a^5 z^{-1} +3 a^4 z^8-4 a^4 z^6-a^4 z^4+3 a^4 z^2-2 a^4+4 a^3 z^7-8 a^3 z^5+4 a^3 z^3-5 a^3 z+2 a^3 z^{-1} +3 a^2 z^6-6 a^2 z^4+a^2 z^2+a z^5-2 a z^3+a z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
2         11
0        2 -2
-2       41 3
-4      54  -1
-6     52   3
-8    45    1
-10   55     0
-12  14      3
-14 25       -3
-16 1        1
-182         -2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-7 {\mathbb Z}^{2}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n30.gif

L11n30

L11n32.gif

L11n32