L11n313

From Knot Atlas
Jump to: navigation, search

L11n312.gif

L11n312

L11n314.gif

L11n314

Contents

L11n313.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n313 at Knotilus!


Link Presentations

[edit Notes on L11n313's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X9,20,10,21 X7,16,8,17 X13,18,14,19 X19,14,20,15 X15,22,16,11 X17,10,18,5 X21,8,22,9 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, -4, 9, -3, 8}, {11, -2, -5, 6, -7, 4, -8, 5, -6, 3, -9, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n313 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1) t(2) t(3)^4+t(1) t(2)^2 t(3)^3+t(2)^2 t(3)^3-t(1) t(3)^3-t(1) t(2) t(3)^3-t(2) t(3)^3-2 t(2)^2 t(3)^2+2 t(1) t(3)^2-t(1) t(2) t(3)^2+t(2) t(3)^2+t(2)^2 t(3)-t(1) t(3)+t(1) t(2) t(3)+t(2) t(3)-t(3)-t(2)}{\sqrt{t(1)} t(2) t(3)^2} (db)
Jones polynomial  q^{-3} - q^{-4} + q^{-5} + q^{-6} +3 q^{-8} -2 q^{-9} +3 q^{-10} -3 q^{-11} +2 q^{-12} - q^{-13} (db)
Signature -4 (db)
HOMFLY-PT polynomial -a^{14} z^{-2} +4 a^{12} z^{-2} +5 a^{12}-a^{10} z^4-9 a^{10} z^2-5 a^{10} z^{-2} -13 a^{10}+a^8 z^6+6 a^8 z^4+9 a^8 z^2+2 a^8 z^{-2} +7 a^8+a^6 z^6+5 a^6 z^4+5 a^6 z^2+a^6 (db)
Kauffman polynomial z^7 a^{15}-5 z^5 a^{15}+7 z^3 a^{15}-4 z a^{15}+a^{15} z^{-1} +2 z^8 a^{14}-10 z^6 a^{14}+13 z^4 a^{14}-7 z^2 a^{14}-a^{14} z^{-2} +3 a^{14}+z^9 a^{13}-2 z^7 a^{13}-11 z^5 a^{13}+26 z^3 a^{13}-19 z a^{13}+5 a^{13} z^{-1} +4 z^8 a^{12}-23 z^6 a^{12}+38 z^4 a^{12}-29 z^2 a^{12}-4 a^{12} z^{-2} +15 a^{12}+z^9 a^{11}-2 z^7 a^{11}-16 z^5 a^{11}+42 z^3 a^{11}-33 z a^{11}+9 a^{11} z^{-1} +3 z^8 a^{10}-21 z^6 a^{10}+44 z^4 a^{10}-42 z^2 a^{10}-5 a^{10} z^{-2} +20 a^{10}+2 z^7 a^9-15 z^5 a^9+27 z^3 a^9-18 z a^9+5 a^9 z^{-1} +z^8 a^8-7 z^6 a^8+14 z^4 a^8-15 z^2 a^8-2 a^8 z^{-2} +8 a^8+z^7 a^7-5 z^5 a^7+4 z^3 a^7+z^6 a^6-5 z^4 a^6+5 z^2 a^6-a^6 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-5           11
-7          110
-9        11  0
-11       211  2
-13      241   1
-15     311    3
-17    252     1
-19   221      1
-21  121       0
-23 12         -1
-25 1          1
-271           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-7 i=-5 i=-3
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-8 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-7 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-5 {\mathbb Z}^{2} {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n312.gif

L11n312

L11n314.gif

L11n314