L11n316

From Knot Atlas
Jump to: navigation, search

L11n315.gif

L11n315

L11n317.gif

L11n317

Contents

L11n316.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n316 at Knotilus!


Link Presentations

[edit Notes on L11n316's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X7,17,8,16 X20,10,21,9 X18,12,19,11 X22,20,11,19 X15,9,16,8 X10,22,5,21 X17,14,18,15 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, -3, 7, 4, -8}, {5, -2, 11, 9, -7, 3, -9, -5, 6, -4, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n316 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 u v^2 w-u v^2+u v w^2-3 u v w+2 u v-u w^2+u w-v^2 w+v^2-2 v w^2+3 v w-v+w^2-2 w}{\sqrt{u} v w} (db)
Jones polynomial q^9-3 q^8+5 q^7-6 q^6+8 q^5-7 q^4+7 q^3-4 q^2+3 q (db)
Signature 2 (db)
HOMFLY-PT polynomial z^2 a^{-8} -z^4 a^{-6} + a^{-6} z^{-2} +2 a^{-6} -2 z^4 a^{-4} -5 z^2 a^{-4} -2 a^{-4} z^{-2} -6 a^{-4} +3 z^2 a^{-2} + a^{-2} z^{-2} +4 a^{-2} (db)
Kauffman polynomial z^9 a^{-5} +z^9 a^{-7} +z^8 a^{-4} +4 z^8 a^{-6} +3 z^8 a^{-8} -2 z^7 a^{-5} +z^7 a^{-7} +3 z^7 a^{-9} -z^6 a^{-4} -11 z^6 a^{-6} -9 z^6 a^{-8} +z^6 a^{-10} +3 z^5 a^{-3} +5 z^5 a^{-5} -8 z^5 a^{-7} -10 z^5 a^{-9} -z^4 a^{-4} +8 z^4 a^{-6} +6 z^4 a^{-8} -3 z^4 a^{-10} -4 z^3 a^{-3} -8 z^3 a^{-5} +3 z^3 a^{-7} +7 z^3 a^{-9} +5 z^2 a^{-2} +10 z^2 a^{-4} -3 z^2 a^{-8} +2 z^2 a^{-10} +6 z a^{-3} +6 z a^{-5} -5 a^{-2} -8 a^{-4} -3 a^{-6} + a^{-8} -2 a^{-3} z^{-1} -2 a^{-5} z^{-1} + a^{-2} z^{-2} +2 a^{-4} z^{-2} + a^{-6} z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
012345678χ
19        11
17       2 -2
15      31 2
13     43  -1
11    42   2
9   34    1
7  44     0
5 14      3
323       -1
13        3
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=0 {\mathbb Z}^{3} {\mathbb Z}^{2}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=7 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=8 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n315.gif

L11n315

L11n317.gif

L11n317