L11n319

From Knot Atlas
Jump to: navigation, search

L11n318.gif

L11n318

L11n320.gif

L11n320

Contents

L11n319.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n319 at Knotilus!


Link Presentations

[edit Notes on L11n319's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X14,5,15,6 X11,21,12,20 X17,11,18,22 X21,17,22,16 X10,13,5,14 X8,20,9,19 X18,8,19,7 X2,9,3,10 X4,16,1,15
Gauss code {1, -10, 2, -11}, {3, -1, 9, -8, 10, -7}, {-4, -2, 7, -3, 11, 6, -5, -9, 8, 4, -6, 5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n319 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u v^2 w^4-u v^2 w^3-u v w^4+3 u v w^3-2 u v w^2+2 u v w-u v-u w^3+u w^2-u w+u-v^2 w^4+v^2 w^3-v^2 w^2+v^2 w+v w^4-2 v w^3+2 v w^2-3 v w+v+w-1}{\sqrt{u} v w^2} (db)
Jones polynomial -2 q^6+4 q^5-7 q^4+10 q^3-9 q^2+11 q-7+6 q^{-1} -3 q^{-2} + q^{-3} (db)
Signature 2 (db)
HOMFLY-PT polynomial -z^8 a^{-2} -6 z^6 a^{-2} +z^6 a^{-4} +z^6-13 z^4 a^{-2} +5 z^4 a^{-4} +4 z^4-14 z^2 a^{-2} +9 z^2 a^{-4} -z^2 a^{-6} +5 z^2-10 a^{-2} +8 a^{-4} -2 a^{-6} +4-5 a^{-2} z^{-2} +4 a^{-4} z^{-2} - a^{-6} z^{-2} +2 z^{-2} (db)
Kauffman polynomial 2 z^9 a^{-1} +2 z^9 a^{-3} +9 z^8 a^{-2} +5 z^8 a^{-4} +4 z^8+3 a z^7-z^7 a^{-1} +4 z^7 a^{-5} +a^2 z^6-34 z^6 a^{-2} -19 z^6 a^{-4} +z^6 a^{-6} -13 z^6-9 a z^5-11 z^5 a^{-1} -15 z^5 a^{-3} -13 z^5 a^{-5} -3 a^2 z^4+50 z^4 a^{-2} +35 z^4 a^{-4} +2 z^4 a^{-6} +14 z^4+5 a z^3+14 z^3 a^{-1} +31 z^3 a^{-3} +25 z^3 a^{-5} +3 z^3 a^{-7} +2 a^2 z^2-37 z^2 a^{-2} -26 z^2 a^{-4} -4 z^2 a^{-6} -13 z^2-11 z a^{-1} -24 z a^{-3} -18 z a^{-5} -5 z a^{-7} +15 a^{-2} +12 a^{-4} +3 a^{-6} +7+5 a^{-1} z^{-1} +9 a^{-3} z^{-1} +5 a^{-5} z^{-1} + a^{-7} z^{-1} -5 a^{-2} z^{-2} -4 a^{-4} z^{-2} - a^{-6} z^{-2} -2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012345χ
13         2-2
11        2 2
9       52 -3
7      52  3
5     56   1
3    64    2
1   37     4
-1  34      -1
-3 14       3
-5 2        -2
-71         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n318.gif

L11n318

L11n320.gif

L11n320