L11n328

From Knot Atlas
Jump to: navigation, search

L11n327.gif

L11n327

L11n329.gif

L11n329

Contents

L11n328.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n328 at Knotilus!


Link Presentations

[edit Notes on L11n328's Link Presentations]

Planar diagram presentation X6172 X5,14,6,15 X8493 X2,16,3,15 X16,7,17,8 X13,18,14,19 X9,21,10,20 X19,5,20,12 X11,13,12,22 X21,11,22,10 X4,17,1,18
Gauss code {1, -4, 3, -11}, {-2, -1, 5, -3, -7, 10, -9, 8}, {-6, 2, 4, -5, 11, 6, -8, 7, -10, 9}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L11n328 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) (w-1) (v w+1)}{\sqrt{u} v w} (db)
Jones polynomial q^5-2 q^4- q^{-4} +4 q^3+2 q^{-3} -4 q^2-3 q^{-2} +6 q+5 q^{-1} -4 (db)
Signature 2 (db)
HOMFLY-PT polynomial z^2 a^{-4} + a^{-4} z^{-2} +2 a^{-4} -a^2 z^4-2 z^4 a^{-2} -3 a^2 z^2-7 z^2 a^{-2} -2 a^{-2} z^{-2} -2 a^2-7 a^{-2} +z^6+5 z^4+9 z^2+ z^{-2} +7 (db)
Kauffman polynomial a z^9+z^9 a^{-1} +2 a^2 z^8+2 z^8 a^{-2} +4 z^8+a^3 z^7-2 a z^7-z^7 a^{-1} +2 z^7 a^{-3} -10 a^2 z^6-7 z^6 a^{-2} +z^6 a^{-4} -18 z^6-5 a^3 z^5-6 a z^5-8 z^5 a^{-1} -7 z^5 a^{-3} +15 a^2 z^4+9 z^4 a^{-2} -2 z^4 a^{-4} +26 z^4+7 a^3 z^3+13 a z^3+14 z^3 a^{-1} +10 z^3 a^{-3} +2 z^3 a^{-5} -9 a^2 z^2-10 z^2 a^{-2} +3 z^2 a^{-4} +z^2 a^{-6} -21 z^2-2 a^3 z-7 a z-10 z a^{-1} -6 z a^{-3} -z a^{-5} +3 a^2+7 a^{-2} + a^{-4} - a^{-6} +9+2 a^{-1} z^{-1} +2 a^{-3} z^{-1} -2 a^{-2} z^{-2} - a^{-4} z^{-2} - z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
11         11
9        1 -1
7       31 2
5      33  0
3     321  2
1    35    2
-1   221    1
-3  13      2
-5 12       -1
-7 1        1
-91         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1 i=3
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z} {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n327.gif

L11n327

L11n329.gif

L11n329