L11n329

From Knot Atlas
Jump to: navigation, search

L11n328.gif

L11n328

L11n330.gif

L11n330

Contents

L11n329.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n329 at Knotilus!


Link Presentations

[edit Notes on L11n329's Link Presentations]

Planar diagram presentation X6172 X5,14,6,15 X3849 X15,2,16,3 X16,7,17,8 X13,18,14,19 X9,13,10,22 X11,21,12,20 X19,5,20,12 X21,11,22,10 X4,17,1,18
Gauss code {1, 4, -3, -11}, {-2, -1, 5, 3, -7, 10, -8, 9}, {-6, 2, -4, -5, 11, 6, -9, 8, -10, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n329 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-t(1) t(3)^2 t(2)^3+t(1) t(3) t(2)^3-t(1) t(3)^3 t(2)^2+t(1) t(3)^2 t(2)^2-t(2)^2+t(1) t(3)^3 t(2)-t(3) t(2)+t(2)-t(3)^2+t(3)}{\sqrt{t(1)} t(2)^{3/2} t(3)^{3/2}} (db)
Jones polynomial - q^{-7} +2 q^{-6} -2 q^{-5} +3 q^{-4} -2 q^{-3} +q^2+4 q^{-2} -q-2 q^{-1} +2 (db)
Signature -4 (db)
HOMFLY-PT polynomial -a^8+a^6 z^4+4 a^6 z^2+2 a^6-a^4 z^6-4 a^4 z^4-2 a^4 z^2+a^4 z^{-2} +a^4-a^2 z^6-5 a^2 z^4-7 a^2 z^2-2 a^2 z^{-2} -5 a^2+z^4+4 z^2+ z^{-2} +3 (db)
Kauffman polynomial z a^9+2 z^2 a^8-a^8+z^5 a^7-2 z^3 a^7+z a^7+2 z^6 a^6-7 z^4 a^6+5 z^2 a^6+2 z^7 a^5-8 z^5 a^5+8 z^3 a^5-3 z a^5+2 z^8 a^4-10 z^6 a^4+17 z^4 a^4-18 z^2 a^4-a^4 z^{-2} +9 a^4+z^9 a^3-4 z^7 a^3+z^5 a^3+8 z^3 a^3-8 z a^3+2 a^3 z^{-1} +3 z^8 a^2-19 z^6 a^2+40 z^4 a^2-35 z^2 a^2-2 a^2 z^{-2} +13 a^2+z^9 a-6 z^7 a+10 z^5 a-2 z^3 a-5 z a+2 a z^{-1} +z^8-7 z^6+16 z^4-14 z^2- z^{-2} +6 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
5         11
3          0
1       21 1
-1     11   0
-3     42   2
-5   123    2
-7   21     1
-9 122      1
-11 22       0
-13 1        1
-151         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3 i=-1
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{4} {\mathbb Z}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n328.gif

L11n328

L11n330.gif

L11n330