L11n331

From Knot Atlas
Jump to: navigation, search

L11n330.gif

L11n330

L11n332.gif

L11n332

Contents

L11n331.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n331 at Knotilus!


Link Presentations

[edit Notes on L11n331's Link Presentations]

Planar diagram presentation X6172 X5,14,6,15 X8493 X2,16,3,15 X16,7,17,8 X13,18,14,19 X9,13,10,22 X11,21,12,20 X19,5,20,12 X21,11,22,10 X4,17,1,18
Gauss code {1, -4, 3, -11}, {-2, -1, 5, -3, -7, 10, -8, 9}, {-6, 2, 4, -5, 11, 6, -9, 8, -10, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n331 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) (t(3)-1) (t(2)+t(3))}{\sqrt{t(1)} t(2) t(3)} (db)
Jones polynomial - q^{-5} +q^4+2 q^{-4} -q^3-3 q^{-3} +4 q^2+5 q^{-2} -4 q-5 q^{-1} +6 (db)
Signature 0 (db)
HOMFLY-PT polynomial a^4 \left(-z^2\right)+ a^{-4} z^{-2} -a^4+ a^{-4} +a^2 z^4+2 a^2 z^2-2 z^2 a^{-2} -2 a^{-2} z^{-2} +2 a^2-3 a^{-2} +z^4+z^2+ z^{-2} +1 (db)
Kauffman polynomial a z^9+z^9 a^{-1} +2 a^2 z^8+z^8 a^{-2} +3 z^8+2 a^3 z^7-3 a z^7-5 z^7 a^{-1} +2 a^4 z^6-7 a^2 z^6-6 z^6 a^{-2} -15 z^6+a^5 z^5-5 a^3 z^5+2 a z^5+9 z^5 a^{-1} +z^5 a^{-3} -6 a^4 z^4+8 a^2 z^4+17 z^4 a^{-2} +z^4 a^{-4} +30 z^4-3 a^5 z^3+a^3 z^3+5 a z^3-z^3 a^{-3} +3 a^4 z^2-2 a^2 z^2-20 z^2 a^{-2} -4 z^2 a^{-4} -21 z^2+a^5 z+a^3 z-3 a z-6 z a^{-1} -3 z a^{-3} -a^4+9 a^{-2} +4 a^{-4} +7+2 a^{-1} z^{-1} +2 a^{-3} z^{-1} -2 a^{-2} z^{-2} - a^{-4} z^{-2} - z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
9         11
7          0
5       41 3
3      22  0
1     42   2
-1    34    1
-3   22     0
-5  13      2
-7 12       -1
-9 1        1
-111         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=3 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n330.gif

L11n330

L11n332.gif

L11n332