L11n348

From Knot Atlas
Jump to: navigation, search

L11n347.gif

L11n347

L11n349.gif

L11n349

Contents

L11n348.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n348 at Knotilus!


Link Presentations

[edit Notes on L11n348's Link Presentations]

Planar diagram presentation X6172 X14,3,15,4 X11,20,12,21 X7,18,8,19 X17,22,18,13 X9,17,10,16 X15,11,16,10 X19,12,20,5 X21,8,22,9 X2536 X4,13,1,14
Gauss code {1, -10, 2, -11}, {10, -1, -4, 9, -6, 7, -3, 8}, {11, -2, -7, 6, -5, 4, -8, 3, -9, 5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n348 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u v^2 w^3-2 u v^2 w^2-u v w^3+u v w+u w^2-u w+v^3 w^2-v^3 w-v^2 w^2+v^2+2 v w-v}{\sqrt{u} v^{3/2} w^{3/2}} (db)
Jones polynomial 1-2 q^{-1} +3 q^{-2} -2 q^{-3} +2 q^{-4} + q^{-6} +2 q^{-7} -2 q^{-8} +2 q^{-9} - q^{-10} (db)
Signature -4 (db)
HOMFLY-PT polynomial -a^{10}+2 z^2 a^8+a^8 z^{-2} +2 a^8-2 a^6 z^{-2} -3 a^6-z^6 a^4-4 z^4 a^4-2 z^2 a^4+a^4 z^{-2} +a^4+z^4 a^2+3 z^2 a^2+a^2 (db)
Kauffman polynomial a^{11} z^7-5 a^{11} z^5+6 a^{11} z^3-2 a^{11} z+2 a^{10} z^8-11 a^{10} z^6+16 a^{10} z^4-10 a^{10} z^2+3 a^{10}+a^9 z^9-4 a^9 z^7-3 a^9 z^5+14 a^9 z^3-7 a^9 z+3 a^8 z^8-21 a^8 z^6+40 a^8 z^4-29 a^8 z^2-a^8 z^{-2} +11 a^8+a^7 z^9-5 a^7 z^7-a^7 z^5+16 a^7 z^3-12 a^7 z+2 a^7 z^{-1} +2 a^6 z^8-14 a^6 z^6+27 a^6 z^4-24 a^6 z^2-2 a^6 z^{-2} +11 a^6+2 a^5 z^7-11 a^5 z^5+14 a^5 z^3-8 a^5 z+2 a^5 z^{-1} +a^4 z^8-3 a^4 z^6-a^4 z^4-a^4 z^2-a^4 z^{-2} +3 a^4+2 a^3 z^7-8 a^3 z^5+6 a^3 z^3-a^3 z+a^2 z^6-4 a^2 z^4+4 a^2 z^2-a^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
1           11
-1          1 -1
-3         21 1
-5       122  1
-7      121   0
-9     222    2
-11    252     1
-13   113      3
-15  121       0
-17 11         0
-19 1          1
-211           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3 i=-1
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n347.gif

L11n347

L11n349.gif

L11n349